
SQL Self-Study Guide
Informix Red Brick Decision Server
Version 6.1
October 2000
Part No. 000-8059

ii SQL Self-Study Guide
Published by Informix Press Informix Corporation
4100 Bohannon Drive
Menlo Park, CA 94025-1032

© 2000 Informix Corporation. All rights reserved. The following are trademarks of Informix Corporation
or its affiliates, one or more of which may be registered in the United States or other jurisdictions:

Answers OnLineTM; ArdentTM; ArdentTM DataStage ;AxielleTM; C-ISAM ; ClickPackTM; Client SDKTM;
CloudconnectorTM; CloudscapeTM; CloudsyncTM; CloudviewTM; DataBlade ; Data DirectorTM; Data MineTM;
Data Mine BuilderTM; DataStage ; Decision FastStartTM; Decision for Telecommunications Campaign
ManagementTM; Decision FrontierTM; Decision Solution SuiteTM; DecisionscapeTM; DialogueTM;
Dynamic ConnectTM; Dynamic Scalable ArchitectureTM; Dynamic ServerTM; Dynamic Server.2000TM;
Dynamic ServerTM, Developer EditionTM; Dynamic ServerTM with Advanced Decision Support OptionTM;
Dynamic ServerTM with Extended Parallel OptionTM; Dynamic ServerTM with MetaCube ROLAP Option;
Dynamic ServerTM with Universal Data OptionTM; Dynamic ServerTM with Web Integration OptionTM;
Dynamic ServerTM, Workgroup EditionTM; Dynamic Virtual MachineTM; e-IterationsTM; Encrypt.CSMTM;
Enterprise Decision ServerTM; E-StageTM; Extract PACKTM; FormationTM; Formation ArchitectTM;
Formation Flow EngineTM; Foundation.2000TM; Frameworks for Business IntelligenceTM;
Frameworks TechnologyTM; Gold Mine Data Access ; i.DecideTM; i.DecideTM Web SuccessTM;
i.Financial ServicesTM; i.FoundationTM; i.IntelligenceTM; i.ReachTM; i.SellTM; Illustra ; Informix ;
Informix COM AdapterTM; Informix Enterprise Command CenterTM; Informix Extended Parallel ServerTM;
Informix Informed DecisionsTM; Informix InquireSM; Informix Internet Foundation.2000TM;
InformixLink ; InformiXMLTM; Informix ReadyTM; Informix Red Brick Decision ServerTM; Informix Session
ProxyTM; Informix VistaTM; InfoShelfTM; Installation AssistantTM; InterforumTM; I-SpyTM; Iterations ;
J/FoundationTM; Load PACKTM; LUCIDTM; MaxConnectTM; Media360TM; MediazationTM; MetaArchitectTM;
MetaBrokerTM; MetaCube ; MetaHubTM; MetaStageTM; NewEra ; O2 & Design ; O2 Technology & Design ;
Object TranslatorTM; Office ConnectTM; ON-BarTM; OnLine Dynamic ServerTM; OnLine/Secure
Dynamic ServerTM; OpenCase ; OrcaTM; PaVERTM; Prism ; Prism & DesignTM; RedBack ; RedBeanTM;
RedBeans & DesignTM; Red Brick and Design; Red Brick Data MineTM; Red Brick Decision ServerTM;
Red Brick Mine BuilderTM; Red Brick DecisionscapeTM; Red Brick ReadyTM; Red Brick Systems ;
Regency Support ; Rely on Red BrickSM; RISQL ; Server AdministratorTM; Solution DesignSM; STARindexTM;
STARjoinTM; SuperTerm ; SuperView ; SureStartTM; SystemBuilderTM; TARGETindexTM; TARGETjoinTM;
The Data Warehouse Company ; UniData ; UniData & Design ; Universal Data Warehouse BlueprintTM;
Universal Database ComponentsTM; Universal Web ConnectTM; UniVerse ; ViewPoint ;
Virtual Table InterfaceTM; VisionaryTM; VistaTM; Web Integration SuiteTM; XML DataPortTM; XML PackTM;
Zero Defect Data . The Informix logo is registered with the United States Patent and Trademark Office. The
DataBlade logo is registered with the United States Patent and Trademark Office.

Documentation Team: Twila Booth, Karen Byers, Diana Chase, Kathy Eckardt, Laura Kremers, Stephanie
Krieger, Bob Rumsby

GOVERNMENT LICENSE RIGHTS

Software and documentation acquired by or for the US Government are provided with rights as follows:
(1) if for civilian agency use, with rights as restricted by vendor’s standard license, as prescribed in FAR 12.212;
(2) if for Dept. of Defense use, with rights as restricted by vendor’s standard license, unless superseded by a
negotiated vendor license, as prescribed in DFARS 227.7202. Any whole or partial reproduction of software or
documentation marked with this legend must reproduce this legend.

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Guide 3

Types of Users 3
Software Dependencies 4

Documentation Conventions 5
Typographical Conventions 5
Syntax Notation 6
Syntax Diagrams 7
Keywords and Punctuation 9
Identifiers and Names 10
Comment Icon Conventions 10

Customer Support 11
New Cases 11
Existing Cases 12
Troubleshooting Tips 12

Related Documentation 13
Additional Documentation 15

Online Manuals 15
Printed Manuals 15

Informix Welcomes Your Comments 16

Chapter 1 Aroma, a Database for Decision Support
In This Chapter 1-3
Aroma Database Retail Schema 1-4
Basic Aroma Schema 1-5
Period, Product, and Class Dimensions 1-6

Period Table 1-6
Product and Class Tables 1-6

iv SQL S
Store, Market, and Promotion Dimensions 1-7
Store and Market Tables 1-8
Promotion Table 1-9

Sales Table . 1-9
About the Sales Facts 1-10

Multipart Primary Key 1-11
Commonly Asked Questions 1-11

Easy . 1-11
Moderately Difficult. 1-12
Very Difficult Without RISQL Extensions 1-12

Typical Data Warehousing Queries 1-12
Summary . 1-13

Chapter 2 Basic Queries
In This Chapter 2-3
Using the SELECT Statement to Retrieve Data 2-4

Retrieving Data: SELECT Statement 2-5
Using SELECT List to Retrieve Specific Columns 2-6

Retrieving Specific Columns 2-8
Using the WHERE Clause to Retrieve Specific Rows 2-9

Retrieving Specific Rows: WHERE Clause 2-10
Using the AND, NOT, and OR Connectives to

Specify Compound Conditions 2-12
Specifying Compound Conditions: AND, NOT, OR 2-13

Using the AND Connective to Specify Complex
Search Conditions 2-14

Specifying Complex Search Conditions 2-14
Using the Greater-Than (>) and Less-Than or

Equal-To (<=) Operators 2-16
Using Comparison Operators 2-17

Using the IN Comparison Predicate 2-18
Using Comparison Predicates 2-19

Using the Percent Sign (%) Wildcard 2-20
Using Wildcard Characters 2-21

Using Simple Joins 2-22
Joining Dimensions and Facts 2-23

Using the ORDER BY Clause 2-24
Ordering the Result Table: ORDER BY Clause 2-26

Calculating Subtotals 2-27
Calculating Subtotals: BREAK BY Clause 2-29
elf-Study Guide

Using the SUM, AVG, MAX, MIN, COUNT Set Functions . . . 2-30
Using Set Functions 2-31

Using Column Aliases 2-32
Using Column Aliases: AS 2-33

Using the GROUP BY Clause to Group Rows 2-34
Grouping Rows: GROUP BY Clause 2-35

Using the GROUP BY Clause to Produce Multiple Groups . . . 2-36
Nesting Grouped Results: GROUP BY Clause 2-38

Using the Division Operator (/) 2-40
Using the Arithmetic Operators: (), +, –, *, / 2-42

Using the HAVING Clause to Exclude Groups 2-43
Conditions on Groups: HAVING Clause 2-44

Removing Rows That Contain NULLs, Zeroes, and Spaces . . . 2-45
Removing Blank Rows: SUPPRESS BY Clause 2-47

Summary . 2-48
The SELECT Statement 2-48
Logical Connectives 2-48
Comparison Operators 2-49
Comparison Predicates 2-49

Chapter 3 Data Analysis
In This Chapter 3-3
RISQL Display Functions 3-4
Using RISQL Display Functions 3-4

Usage Notes 3-5
Using the CUME() Function 3-5

Cumulative Totals: CUME 3-7
Using CUME with RESET BY 3-9

Resetting Cumulative Totals: RESET BY Subclause 3-10
Using the MOVINGAVG() Function 3-12

Calculating Moving Averages: MOVINGAVG 3-14
Using the MOVINGSUM Function 3-15

Calculating Moving Sums: MOVINGSUM 3-17
Using the RANK Function 3-18

Ranking Data: RANK. 3-19
Using the RANK, WHEN Function 3-20

Ranking the Top Ten: RANK, WHEN 3-21
Using the NTILE Function 3-22

Ranking Values in Groups: NTILE 3-23
Using the NTILE Function with a CASE Expression 3-24

Ranking Values in Unequal Groups: CASE and NTILE . . . 3-26
Table of Contents v

vi SQL S
Using the TERTILE Function 3-28
Ranking Values as High, Middle, or Low: TERTILE 3-29

Using the RATIOTOREPORT Function 3-30
Calculating Ratios as Percentages:

RATIOTOREPORT*100 3-31
Using the DATEADD Function 3-32

Incrementing or Decrementing Dates: DATEADD 3-34
Using the DATEDIFF Function 3-36

Calculating Elapsed Days: DATEDIFF 3-37
Using the EXTRACT Function 3-38

Displaying Dateparts as Integers: EXTRACT 3-40
Summary . 3-41

RISQL Display Functions 3-41
CASE Expressions 3-41
DATETIME Functions 3-42

Chapter 4 Comparison Queries
In This Chapter 4-3
Comparing Data with SQL 4-4

A Simple Comparison Query 4-6
Using CASE Expressions 4-6

A Solution for Comparing Data: CASE Expressions 4-8
Using Subqueries in the FROM Clause 4-9

A More Flexible Solution: Subqueries
in the FROM Clause 4-11

Performing Calculations and Comparisons 4-12
Calculations with FROM Clause Subqueries 4-13

Using Subqueries in the Select List 4-14
Comparisons with Select-List Subqueries 4-16

Using Correlated Subqueries 4-17
Correlated Subqueries in the Select List 4-19

Using Cross-References 4-20
Cross-References with Expressions 4-21

Calculating Percentages of Quarter and Year 4-22
Calculations with Select-List Subqueries 4-23

Using Subqueries in the WHERE Clause 4-24
Comparisons with WHERE Clause Subqueries 4-25

Using the ALL Comparison Predicate 4-26
Comparison Predicates in Subqueries. 4-27

Using the EXISTS Predicate 4-28
EXISTS Predicate 4-29
elf-Study Guide

Using the SOME or ANY Predicate 4-31
SOME or ANY Predicate 4-32

Summary . 4-33

Chapter 5 Joins and Unions
In This Chapter 5-3
Join of Two Tables 5-3

Inner Joins 5-5
Different Ways to Join Tables 5-6

Joins in the FROM Clause 5-7
System Table Join 5-8

Joining System Tables. 5-9
Self-Joins . 5-10

Joining a Table to Itself 5-12
Outer Join of Two Tables 5-12

Outer Joins 5-14
Fact-to-Fact Join 5-15

Left Outer Join 5-17
Fact-to-Fact Join 5-18

Full Outer Join with ORDER BY, BREAK BY 5-19
OR Versus UNION 5-21

Combining Result Sets: UNION 5-22
INTERSECT Operation 5-24

Finding Common Rows: INTERSECT 5-25
INTERSECT Operation Inside Subquery 5-26

INTERSECT of Fact Table Data 5-27
EXCEPT Operation 5-28

EXCEPT: Finding the Exceptions in Two Result Sets 5-29
Summary . 5-30

Joining Tables 5-30
UNION, INTERSECT, and EXCEPT Operators 5-30

Chapter 6 Macros, Views, and Temporary Tables
In This Chapter 6-3
Basic Macros 6-4

Using Basic Macros 6-5
Embedded Macros 6-7

Using Embedded Macros 6-9
Macros with Parameters 6-10

Using Macros with Parameters 6-12
Table of Contents vii

viii SQL
Multiparameter Macros 6-13
Macros with Multiple Parameters 6-14

Comparisons 6-15
Using Comparison Macros 6-17

Share Comparisons 6-18
Using Share Comparison Macros 6-19

Change in Share 6-20
Using Macros That Calculate Change in Share. 6-21

Views . 6-22
Selecting from Views 6-23

INSERT INTO SELECT Statement 6-25
Creating a Temporary Table 6-26

Summary . 6-28
CREATE MACRO Statement. 6-28
CREATE VIEW Statement. 6-28
CREATE TEMPORARY TABLE Statement 6-28
INSERT INTO SELECT Statement 6-28

Appendix A The Complete Aroma Database

Index
 Self-Study Guide

Introduction
Introduction
In This Introduction 3

About This Guide 3
Types of Users 3
Software Dependencies 4

Documentation Conventions 5
Typographical Conventions 5
Syntax Notation 6
Syntax Diagrams 7
Keywords and Punctuation 9
Identifiers and Names 10
Comment Icon Conventions 10

Customer Support 11
New Cases . 11
Existing Cases 12
Troubleshooting Tips 12

Related Documentation 13

Additional Documentation 15
Online Manuals 15
Printed Manuals 15

Informix Welcomes Your Comments 16

2 SQL S
elf-Study Guide

In This Introduction
This introduction provides an overview of the information in this document
and describes the conventions it uses.

About This Guide
This guide provides an example-based review of SQL and introduction to the
RISQL extensions, the macro facility, and Aroma, the sample database.

Types of Users
This guide is written for the following users:

■ Database users

■ Database administrators

■ Database server administrators

■ Database-application programmers

■ Database architects

■ Database designers

■ Database developers

■ Backup operators

■ Performance engineers
Introduction 3

Software Dependencies
This guide assumes that you have the following background:

■ A working knowledge of your computer, your operating system,
and the utilities that your operating system provides

■ Some experience working with relational databases or exposure to
database concepts

■ Some experience with computer programming

■ Some experience with database server administration, operating-
system administration, or network administration

Software Dependencies
This guide assumes that you are using Informix Red Brick Decision Server,
Version 6.1, as your database server.

Red Brick Decision Server includes the Aroma database, which contains sales
data about a fictitious coffee and tea company. The database tracks daily
retail sales in stores owned by the Aroma Coffee and Tea Company. The
dimensional model for this database consists of a fact table and its
dimensions.

For information about how to create and populate the demonstration
database, see the Administrator’s Guide. For a description of the database and
its contents, see Chapter 1, “Aroma, a Database for Decision Support” and
Appendix A, “The Complete Aroma Database” of this guide.

The scripts that you use to install the demonstration database reside in the
redbrick_dir/sample_input directory, where redbrick_dir is the Red Brick
Decision Server directory on your system.
4 SQL Self-Study Guide

Documentation Conventions
Documentation Conventions
This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set.

The following conventions are discussed:

■ Typographical conventions

■ Syntax notation

■ Syntax diagrams

■ Keywords and punctuation

■ Identifiers and names

■ Icon conventions

Typographical Conventions
This manual uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

 (1 of 2)
Introduction 5

Syntax Notation
Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Syntax Notation
This guide uses the following conventions to describe the syntax of
operating-system commands.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of one or more product- or
platform-specific paragraphs.

➞ This symbol indicates a menu item. For example, “Choose
Tools➞ Options” means choose the Options item from the
Tools menu.

Command Element Example Convention

Values and
parameters

table_name Items that you replace with an appropriate
name, value, or expression are in italic type
style.

Optional items [] Optional items are enclosed by square
brackets. Do not type the brackets.

Choices ONE |TWO Choices are separated by vertical lines; choose
one if desired.

Required choices {ONE|TWO} Required choices are enclosed in braces;
choose one. Do not type the braces.

 (1 of 2)

Convention Meaning

 (2 of 2)
6 SQL Self-Study Guide

Syntax Diagrams
Syntax Diagrams
This guide uses diagrams built with the following components to describe
the syntax for statements and all commands other than system-level
commands.

Default values ONE|TWO Default values are underlined, except in
graphics where they are in bold type style.

Repeating items name, … Items that can be repeated are followed by a
comma and an ellipsis. Separate the items
with commas.

Language
elements

() , ; . Parentheses, commas, semicolons, and
periods are language elements. Use them
exactly as shown.

Component Meaning

Statement begins.

Statement syntax continues on next line. Syntax
elements other than complete statements end with
this symbol.

Statement continues from previous line. Syntax
elements other than complete statements begin
with this symbol.

Statement ends.

Required item in statement.

Optional item.

 (1 of 2)

Command Element Example Convention

 (2 of 2)

SELECT

DISTINCT
Introduction 7

Syntax Diagrams
The preceding syntax elements are combined to form a diagram as follows.

Required item with choice. One and only one item
must be present.

Optional item with choice. If a default value exists,
it is printed in bold.

Optional items. Several items are allowed; a
comma must precede each repetition.

Component Meaning

 (2 of 2)

DBA TO

SELECT ON
CONNECT TO

ASC

DESC

,

ASC

DESC

REORG table_name

INDEX

,

()index_name

RECALCULATE RANGES OPTIMIZE ON

;

OFF
8 SQL Self-Study Guide

Keywords and Punctuation
Complex syntax diagrams such as the one for the following statement are
repeated as point-of-reference aids for the detailed diagrams of their compo-
nents. Point-of-reference diagrams are indicated by their shadowed corners,
gray lines, and reduced size.

The point-of-reference diagram is then followed by an expanded diagram of
the shaded portion—in this case, the INPUT_CLAUSE.

Keywords and Punctuation
Keywords are words reserved for statements and all commands except
system-level commands. When a keyword appears in a syntax diagram, it is
shown in uppercase characters. You can write a keyword in uppercase or
lowercase characters, but you must spell the keyword exactly as it appears in
the syntax diagram.

Any punctuation that occurs in a syntax diagram must also be included in
your statements and commands exactly as shown in the diagram.

segment_clause

LOAD

DATA

INPUT_CLAUSE

DISCARD_CLAUSE

TABLE_CLAUSE ;
criteria_clauseoptimize_clause comment_clause

FORMAT_CLAUSE

)('FILENAME '

INPUTFILE

INDDN

START RECORD START_ROWSTART_ROW STOP RECORD STOP_ROW

TAPE DEVICE 'DEVICE_NAME '

FILENAME
Introduction 9

Identifiers and Names
Identifiers and Names
Variables serve as placeholders for identifiers and names in the syntax
diagrams and examples. You can replace a variable with an arbitrary name,
identifier, or literal, depending on the context. Variables are also used to
represent complex syntax elements that are expanded in additional syntax
diagrams. When a variable appears in a syntax diagram, an example, or text,
it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of
a simple SELECT statement.

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

Comment Icon Conventions
Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

SELECT column_name FROM table_name

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described
10 SQL Self-Study Guide

Customer Support
Customer Support
Please review the following information before contacting Informix
Customer Support.

If you have technical questions about Informix Red Brick Decision Server but
cannot find the answer in the appropriate document, contact Informix
Customer Support as follows:

For nontechnical questions about Red Brick Decision Server, contact
Informix Customer Support as follows:

New Cases
To log a new case, you must provide the following information:

■ Red Brick Decision Server version

■ Platform and operating-system version

■ Error messages returned by Red Brick Decision Server or the
operating system

■ Concise description of the problem, including any commands or
operations performed before you received the error message

■ List of Red Brick Decision Server or operating-system configuration
changes made before you received the error message

Telephone 1-800-274-8184 or 1-913-492-2086
(7 A.M. to 7 P.M. Central Time, Monday through Friday)

Internet access http://www.informix.com/techinfo

Telephone 1-800-274-8184
(7 A.M. to 7 P.M. Central Time, Monday through Friday)

Internet access http://www.informix.com/services
Introduction 11

Existing Cases
For problems concerning client-server connectivity, you must provide the
following additional information:

■ Name and version of the client tool that you are using

■ Version of Informix ODBC Driver or Informix Red Brick JDBC Driver
that you are using, if applicable

■ Name and version of client network or TCP/IP stack in use

■ Error messages returned by the client application

■ Server and client locale specifications

Existing Cases
The support engineer who logs your case or first contacts you will always
give you a case number. This number is used to keep track of all the activities
performed during the resolution of each problem. To inquire about the status
of an existing case, you must provide your case number.

Troubleshooting Tips
You can often reduce the time it takes to close your case by providing the
smallest possible reproducible example of your problem. The more you can
isolate the cause of the problem, the more quickly the support engineer can
help you resolve it:

■ For SQL query problems, try to remove columns or functions or to
restate WHERE, ORDER BY, or GROUP BY clauses until you can isolate
the part of the statement causing the problem.

■ For Table Management Utility (TMU) load problems, verify the data
type mapping between the source file and the target table to ensure
compatibility. Try to load a small test set of data to determine
whether the problem concerns volume or data format.

■ For connectivity problems, issue the ping command from the client to
the host to verify that the network is up and running. If possible, try
another client tool to see if the same problem arises.
12 SQL Self-Study Guide

Related Documentation
Related Documentation
The documentation set for Red Brick Decision Server includes the following
documents.

Document Description

Administrator’s Guide Describes warehouse architecture, supported
schemas, and other concepts relevant to databases.
Procedural information for designing and imple-
menting a database, maintaining a database, and
tuning a database for performance. Includes a
description of the system tables and the configu-
ration file.

Client Installation and Connec-
tivity Guide

Includes procedures for installing and configuring
ODBC, Red Brick JDBC Driver, RISQL Entry Tool,
and RISQL Reporter on client systems. Describes
how to access Red Brick Decision Server using
ODBC for C and C++ applications and JDBC for
Java applications.

Informix Vista User’s Guide Describes the Informix Vista aggregate computation
and management system. Illustrates how Vista
improves query performance by automatically
rewriting queries to use aggregates, describes how
the Advisor recommends the best set of aggregates
based on data collected daily, and explains how
aggregate tables are maintained when their detail
tables are updated.

Installation and Configuration
Guide

Provides installation and configuration infor-
mation, as well as platform-specific material, about
Red Brick Decision Server. Customized for either
UNIX and Linux or Windows NT and
Windows 2000.

Messages and Codes Reference
Guide

Contains a complete listing of all informational,
warning, and error messages generated by Informix
Red Brick Decision Server products, including
probable causes and recommended responses. Also
includes event log messages that are written to the
log files.

 (1 of 2)
Introduction 13

Related Documentation
Additional references you might find helpful include:

■ An introductory-level book on SQL

■ An introductory-level book on relational databases

■ Documentation for your hardware platform and operating system

The release notes Contains information pertinent to the current
release that was unavailable when the documents
were printed.

RISQL Entry Tool and RISQL
Reporter User’s Guide

Is a complete guide to the RISQL Entry Tool, a
command-line tool used to enter SQL statements,
and the RISQL Reporter, an enhanced version of the
RISQL Entry Tool with report-formatting
capabilities.

SQL Reference Guide Is a complete language reference for the Informix
Red Brick SQL implementation and RISQL exten-
sions for Red Brick Decision Server databases.

This guide Provides an example-based review of SQL and
introduction to the RISQL extensions, the macro
facility, and Aroma, the sample database.

Table Management Utility
Reference Guide

Describes the Table Management Utility, including
all activities related to loading and maintaining
data. Also includes information about data repli-
cation and the rb_cm copy management utility.

Document Description

 (2 of 2)
14 SQL Self-Study Guide

Additional Documentation
Additional Documentation
For additional information, you might want to refer to the following types of
documentation:

■ Online manuals

■ Printed manuals

Online Manuals
An Answers OnLine CD that contains Informix manuals in electronic format
is provided with your Informix products. You can install the documentation
or access it directly from the CD. For information about how to install, read,
and print online manuals, see the installation insert that accompanies
Answers OnLine.

Printed Manuals
To order printed manuals, call 1-800-331-1763 or send email to
moreinfo@informix.com. Please provide the following information when
you place your order:

■ The documentation that you need

■ The quantity that you need

■ Your name, address, and phone number
Introduction 15

Informix Welcomes Your Comments
Informix Welcomes Your Comments
Let us know what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would find useful. Include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

Send electronic mail to us at the following address:

doc@informix.com

The doc alias is reserved exclusively for reporting errors and omissions in our
documentation.

We appreciate your suggestions.
16 SQL Self-Study Guide

1
Chapter
Aroma, a Database for Decision
Support
In This Chapter . 1-3

Aroma Database Retail Schema 1-4

Basic Aroma Schema 1-5

Period, Product, and Class Dimensions 1-6
Period Table . 1-6
Product and Class Tables 1-6

Store, Market, and Promotion Dimensions 1-7
Store and Market Tables 1-8
Promotion Table 1-9

Sales Table . 1-9

About the Sales Facts 1-10
Multipart Primary Key 1-11

Commonly Asked Questions 1-11
Easy . 1-11
Moderately Difficult 1-12
Very Difficult Without RISQL Extensions 1-12

Typical Data Warehousing Queries 1-12

Summary . 1-13

1-2 SQL
 Self-Study Guide

In This Chapter
This guide shows how to express commonly asked business questions as
database queries by using the Structured Query Language (SQL) and the
RISQL extensions to SQL developed by Informix. This guide also illustrates
how query writing can be simplified with RISQL macros when queries or
parts of queries are issued repetitively.

All the examples in this document and in most of the Informix documen-
tation are based on Aroma, a sample database that contains sales data for
coffee and tea products sold in stores across the United States. Each example
consists of three parts:

■ A business question, expressed in everyday language

■ One or more corresponding SELECT statements, expressed in SQL

■ A table of results returned from the database

Aroma is typically installed when the Red Brick Decision Server software is
installed. To run the sample queries yourself, ask your system administrator
how to access the Aroma database at your site.

This chapter presents the tables of the basic Aroma database and briefly
describes the primary-key to foreign-key relationships that link the data in
these tables.

This chapter also presents a few of the questions that the Aroma database or
any Red Brick Decision Server database can answer quickly and efficiently.
Aroma, a Database for Decision Support 1-3

Aroma Database Retail Schema
Aroma Database Retail Schema
Most of the examples in this guide are based on data from the basic Aroma
database, which tracks daily retail sales in stores owned by the Aroma Coffee
and Tea Company. The retail schema consists of four main dimension tables—
Period, Product, Store, and Promotion—and a Sales fact table, as well as two
outboard tables, Class and Market.

The following figure illustrates this basic schema.

The crow’s feet in this diagram indicate a one-to-many relationship between
the two tables. For example, each distinct value in the Perkey column of the
Period table can occur only once in that table but many times in the Sales
table. Column names in bold are primary-key columns. Column names in
italic are foreign-key columns. Column names in bold italic are primary and
foreign-key columns.

The remainder of this chapter presents sample data from each table so you
can see how these primary-key to foreign-key relationships work.

perkey
date
day
week
month
qtr
year

Market
Store

Period

storekey
mktkey
store_type
store_name
street
city
state
zip

mktkey
hq_city
hq_state
district
region

promokey
promo_type
promo_desc
value
start_date
end_date

Promotion

Class
classkey
class_type
class_desc

Product
classkey
prodkey
prod_name
pkg_type

Sales
perkey
classkey
prodkey
storekey
promokey
quantity
dollars
1-4 SQL Self-Study Guide

Basic Aroma Schema
Basic Aroma Schema
In a decision-support database, the tables and columns are named with
familiar business terms, making the schema easy to understand and use. A
well-designed schema provides the following benefits to application devel-
opers and end users:

■ Business questions are easy to express as SQL queries.

■ Queries run fast and return consistent answers.

The retail Aroma schema meets both of these criteria. The Sales table
contains the everyday measurements of the business—the facts—and the
Store, Period, Product, and Promotion tables contain the dimensions, or
characteristics, of the business. The Class and Market tables contain infor-
mation that adds another level of detail to the product and store information.

Most of the examples in this guide use the simple star schema formed by
these seven basic tables, but the Aroma database also contains a purchasing
schema with a more complex design. For details, refer to Appendix A, “The
Complete Aroma Database.”

Important: The Aroma database does not contain any predefined aggregate tables.
For information about using the Informix Vista query rewrite system to accelerate
the performance of aggregate queries, refer to the “Informix Vista User’s Guide.”
Aroma, a Database for Decision Support 1-5

Period, Product, and Class Dimensions
Period, Product, and Class Dimensions

Period Table
The following table displays the first few rows of the Period table. The
primary-key column is the Perkey column:

Product and Class Tables
The following table displays the first few rows of the Product table. The
primary key is a combination of the Classkey and Prodkey values:

Perkey Date Day Week Month Qtr YEAR

1 1998-01-01 TH 1 JAN Q1_98 1998

2 1998-01-02 FR 1 JAN Q1_98 1998

3 1998-01-03 SA 1 JAN Q1_98 1998

4 1998-01-04 SU 2 JAN Q1_98 1998

5 1998-01-05 MO 2 JAN Q1_98 1998

6 1998-01-06 TU 2 JAN Q1_98 1998

...

Classkey Prodkey Prod_Name Pkg_Type

1 0 Veracruzano No pkg

1 1 Xalapa Lapa No pkg

1 10 Colombiano No pkg

1 11 Espresso XO No pkg

 (1 of 2)
1-6 SQL Self-Study Guide

Store, Market, and Promotion Dimensions
If a dimension table contains foreign-key columns that reference other
dimension tables, the referenced tables are called outboard or outrigger tables.
For example, the Classkey column of the Product table is a foreign-key
reference to the Class table.

The following table displays the first few rows of the Class table.

Store, Market, and Promotion Dimensions
Dimension tables contain descriptions that data analysts use as they query
the database. For example, the Store table contains store names and
addresses; the Product table contains product and packaging information;
and the Period table contains month, quarter, and year values. Every table
contains a primary key that consists of one or more columns; each row in a
table is uniquely identified by its primary-key value or values.

1 12 La Antigua No pkg

1 20 Lotta Latte No pkg

...

Classkey Class_Type Class_Desc

1 Bulk_beans Bulk coffee products

2 Bulk_tea Bulk tea products

3 Bulk_spice Bulk spices

4 Pkg_coffee Individually packaged coffee products

5 Pkg_tea Individually packaged tea products

6 Pkg_spice Individually packaged spice products

Classkey Prodkey Prod_Name Pkg_Type

 (2 of 2)
Aroma, a Database for Decision Support 1-7

Store and Market Tables
Store and Market Tables
The following table displays the first few rows of the Store table (some
columns were truncated to fit on the page). The primary-key column is
Storekey; Mktkey is a foreign-key reference to the Market table.

The following table displays the first few rows of the Market table.

Storekey Mktkey Store_Type Store_Name STREET CITY STATE ZIP

1 14 Small Roasters, Los
Gatos

1234 University Ave Los Gatos CA 95032

2 14 Large San Jose Roasting 5678 Bascom Ave San Jose CA 95156

3 14 Medium Cupertino Coffee 987 DeAnza Blvd Cupertino CA 97865

4 3 Medium Moulin Rouge 898 Main Street New
Orleans

LA 70125

5 10 Small Moon Pennies 98675 University Detroit MI 48209

6 9 Small The Coffee Club 9865 Lakeshore Bl Chicago IL 06060

...

Mktkey Hq_city Hq_state District Region

1 Atlanta GA Atlanta South

2 Miami FL Atlanta South

3 New Orleans LA New Orleans South

4 Houston TX New Orleans South

5 New York NY New York North

...
1-8 SQL Self-Study Guide

Promotion Table
Promotion Table
The following table displays the first few rows of the Promotion table. The
primary-key column is Promokey.

Sales Table
The following table displays the first 20 rows of the Sales table.

Promokey Promo_Type Promo_Desc Value Start_Date End_Date

0 1 No promotion 0.00 9999-01-01 9999-01-01

1 100 Aroma catalog coupon 1.00 1998-01-01 1998-01-31

2 100 Aroma catalog coupon 1.00 1998-02-01 1998-02-28

3 100 Aroma catalog coupon 1.00 1998-03-01 1998-03-31

4 100 Aroma catalog coupon 1.00 1998-04-01 1998-04-30

5 100 Aroma catalog coupon 1.00 1998-05-01 1998-05-31

...

Perkey Classkey Prodkey Storekey Promokey Quantity Dollars

2 2 0 1 116 8 34.00

2 4 12 1 116 9 60.75

2 1 11 1 116 40 270.00

2 2 30 1 116 16 36.00

2 5 22 1 116 11 30.25

2 1 30 1 116 30 187.50

2 1 10 1 116 25 143.75

2 4 10 2 0 12 87.00

 (1 of 2)
Aroma, a Database for Decision Support 1-9

About the Sales Facts
The primary-key column is a combination of values from five columns:

perkey, classkey, prodkey, storekey, promokey

About the Sales Facts
The Sales table is a fact table; the data it contains is easily accessible through
the business attributes defined in the tables it references, and it stores large
amounts of statistical information about those attributes. The Sales table is
the largest table in the Aroma database and its data is split into two database
storage areas (known as segments). For information about segments, refer to
the Administrator’s Guide.

2 4 11 2 0 14 115.50

2 2 22 2 0 18 58.50

2 4 0 2 0 17 136.00

2 5 0 2 0 13 74.75

2 4 30 2 0 14 101.50

2 2 10 2 0 18 63.00

2 1 22 3 0 11 99.00

2 6 46 3 0 6 36.00

2 5 12 3 0 10 40.00

2 1 11 3 0 36 279.00

2 5 1 3 0 11 132.00

2 5 10 3 0 12 48.00

...

Perkey Classkey Prodkey Storekey Promokey Quantity Dollars

 (2 of 2)
1-10 SQL Self-Study Guide

Multipart Primary Key
Access to business facts must be easy and quick. Red Brick Decision Server
provides such access by addressing fact table rows through business dimen-
sions familiar to the query writer. For example, to retrieve sales of La Antigua
coffee at the San Jose Roasting Company on January 31, 1999, you simply
specify those three dimensions (1/31/99, product name, store name), and the
database server quickly retrieves your request.

Multipart Primary Key
The Sales table contains a multipart primary key. Each of its five columns is
a foreign-key reference to the primary key of another table:

perkey, classkey, prodkey, storekey, promokey

This primary key links the Sales data to the Period, Product, Store, and
Promotion dimensions. Through such links, figures regarding the sale of a
specific product on a particular day in a given city, expressed in terms of
dollars and quantities, can be quickly and easily retrieved from the database.

Commonly Asked Questions
Some of the more commonly asked business questions follow.

Easy
■ What were the weekly sales of Lotta Latte brand coffee in San Jose

during last year?

■ What were the average monthly sales of all coffee products in the
West during each month of last year?
Aroma, a Database for Decision Support 1-11

Moderately Difficult
Moderately Difficult
■ How do the sales of Lotta Latte in San Jose compare with its sales in

Los Angeles and New York?

■ How has the monthly market share of Lotta Latte changed during
the last two years in all markets?

■ Which suppliers charge the most for bulk tea products?

■ What was the most successful promotion last December in
California?

Very Difficult Without RISQL Extensions
■ What were the running totals for Lotta Latte sales during each month

of last year?

■ What were the ratios of monthly sales to total sales (expressed as
percentages) for Lotta Latte during the same period?

■ Which ten cities had the worst coffee sales in 1998 with regard to
dollar sales and quantities sold?

■ Which Aroma stores fall into the top 25 percent in terms of sales
revenue for the first quarter of 1999? Which stores fall into the middle
50 percent, and the bottom 25 percent?

Typical Data Warehousing Queries
Many kinds of commonly asked business questions can be readily expressed
as SQL queries. For example, anyone familiar with SQL can write a query that
returns the quarterly sales of a given product in a given year.

However, many other commonly asked questions cannot be expressed so
easily. Questions that require comparisons often challenge both the query
writers and SQL itself. For example, a question requesting a comparison of
weekly, monthly, quarterly, and yearly values is one of the simplest questions
posed during a sales analysis, but expressing this question as a query repre-
sents a formidable challenge to the query writer, the query language, and the
database server.
1-12 SQL Self-Study Guide

Summary
Business questions that request sequential processing are very difficult to
express as SQL queries. To derive a simple running total, for example, data
analysts typically run several queries with a client tool, then paste the results
together using another tool. This approach is awkward because it requires a
sophisticated user, floods the network with data, and takes place on a client
that is typically much slower than a database server.

The RISQL extensions to SQL provide a better solution because they are easy
to use, reduce network traffic, and perform sequential calculations that
execute quickly on the server.

Summary
This chapter briefly described the retail schema of the Aroma database and
suggested some typical business questions that a Red Brick Decision Server
database can answer.

A decision-support database is designed to be queried: It has a few easy-to-
understand tables, provides exceptional query performance, and guarantees
data integrity. To this end, the primary tables in a Red Brick Decision Server
database are:

■ Few in number

■ Designed using the analyst’s vocabulary

■ Reflective of the natural dimensions of the business

The remainder of this self-study guide consists of detailed examples that
show how to write commonly asked business questions. Most of these
examples are based on the Aroma retail schema. Some additional tables are
used sporadically in the more advanced examples. These tables are described
in Appendix A, “The Complete Aroma Database.”
Aroma, a Database for Decision Support 1-13

2
Chapter
Basic Queries
In This Chapter . 2-3

Using the SELECT Statement to Retrieve Data 2-4
Retrieving Data: SELECT Statement 2-5

Using SELECT List to Retrieve Specific Columns 2-6
Retrieving Specific Columns 2-8

Using the WHERE Clause to Retrieve Specific Rows 2-9
Retrieving Specific Rows: WHERE Clause 2-10

Using the AND, NOT, and OR Connectives to Specify
Compound Conditions 2-12
Specifying Compound Conditions: AND, NOT, OR 2-13

Using the AND Connective to Specify Complex
Search Conditions 2-14
Specifying Complex Search Conditions 2-14

Using the Greater-Than (>) and Less-Than or
Equal-To (<=) Operators. 2-16
Using Comparison Operators 2-17

Using the IN Comparison Predicate 2-18
Using Comparison Predicates 2-19

Using the Percent Sign (%) Wildcard 2-20
Using Wildcard Characters 2-21

Using Simple Joins 2-22
Joining Dimensions and Facts 2-23

Using the ORDER BY Clause 2-24
Ordering the Result Table: ORDER BY Clause 2-26

2-2 SQL
Calculating Subtotals 2-27
Calculating Subtotals: BREAK BY Clause 2-29

Using the SUM, AVG, MAX, MIN, COUNT Set Functions 2-30
Using Set Functions 2-31

Using Column Aliases 2-32
Using Column Aliases: AS 2-33

Using the GROUP BY Clause to Group Rows 2-34
Grouping Rows: GROUP BY Clause. 2-35

Using the GROUP BY Clause to Produce Multiple Groups 2-36
Nesting Grouped Results: GROUP BY Clause 2-38

Using the Division Operator (/) 2-40
Using the Arithmetic Operators: (), +, –, *, / 2-42

Using the HAVING Clause to Exclude Groups 2-43
Conditions on Groups: HAVING Clause 2-44

Removing Rows That Contain NULLs, Zeroes, and Spaces 2-45
Removing Blank Rows: SUPPRESS BY Clause 2-47

Summary . 2-48
The SELECT Statement 2-48
Logical Connectives 2-48
Comparison Operators 2-49
Comparison Predicates 2-49
 Self-Study Guide

In This Chapter
Through a series of simple examples, this chapter illustrates how to retrieve
data from a Red Brick Decision Server database with standard SQL SELECT
statements.

This chapter describes how to:

■ Retrieve specific columns and rows from a relational database table

■ Perform logical operations on retrieved data

■ Use wildcard characters in search conditions

■ Retrieve data from more than one table

■ Order data and calculate subtotals on numeric columns

■ Perform aggregate calculations with set functions

■ Group data

■ Perform arithmetic operations on retrieved data

■ Remove rows from the result set if specified columns contain NULLs,
zeroes, or spaces
Basic Queries 2-3

Using the SELECT Statement to Retrieve Data
Using the SELECT Statement to Retrieve Data

Question
What regions, districts, and markets are defined in the Aroma database?

Example Query
select * from market;

Result

Mktkey HQ_City HQ_State District Region

1 Atlanta GA Atlanta South

2 Miami FL Atlanta South

3 New Orleans LA New Orleans South

4 Houston TX New Orleans South

5 New York NY New York North

6 Philadelphia PA New York North

7 Boston MA Boston North

8 Hartford CT Boston North

9 Chicago IL Chicago Central

10 Detroit MI Chicago Central

11 Minneapolis MN Minneapolis Central

12 Milwaukee WI Minneapolis Central

14 San Jose CA San Francisco West

15 San Francisco CA San Francisco West

 (1 of 2)
2-4 SQL Self-Study Guide

Retrieving Data: SELECT Statement
Retrieving Data: SELECT Statement
You use SELECT statements to retrieve columns and rows of data from
database tables, to perform arithmetic operations on the data, and to group,
order, or group and order the data. In most cases, a SELECT statement
contains a simple query expression that begins with the SELECT keyword and
is followed by one or more clauses and subclauses. (For detailed information
about more complex query expressions, refer to the SQL Reference Guide.)

The most basic SELECT statement contains two keywords, SELECT and FROM:

SELECT select_list
FROM table_list;

SELECT and FROM (and all other words shown in uppercase in subsequent
references to syntax in this guide) are reserved SQL keywords. These words
must be used exactly as defined by the SQL standard. SQL is not case
sensitive, so keywords can be written in uppercase or lowercase.

About the Query

The example query retrieves the entire contents of the Market table. The
asterisk symbol (*) is the SQL abbreviation for “all column names that occur
in table_list.” All column names in the Market table could be listed instead.

16 Oakland CA San Francisco West

17 Los Angeles CA Los Angeles West

19 Phoenix AZ Los Angeles West

select_list Column names or SQL expressions are separated by commas. An
asterisk (*) can also be used.

table_list Table names are separated by commas. Referenced tables must
contain the column names in select_list.

Mktkey HQ_City HQ_State District Region

 (2 of 2)
Basic Queries 2-5

Using SELECT List to Retrieve Specific Columns
Red Brick Decision Server also supports explicit tables, whereby this query
could be stated simply as:

table market;

Usage Notes

Names in a select list must be defined in tables listed in the FROM clause;
exceptions to this rule are discussed later in this chapter. Columns are
returned from the database in the order listed. If you use an asterisk, columns
are returned as stored in the database table.

The semicolon (;) at the end of each example in this guide is not part of SQL
syntax; it is an end-of-statement marker required by the RISQL Entry Tool and
the RISQL Reporter. Depending on the interactive SQL tool you use to enter
queries, you might not need to specify such a marker.

Using SELECT List to Retrieve Specific Columns

Question
Which districts and regions are defined in the Aroma database?

Example Query
select district, region
from market;
2-6 SQL Self-Study Guide

Result
Result

District Region

Atlanta South

Atlanta South

New Orleans South

New Orleans South

New York North

New York North

Boston North

Boston North

Chicago Central

Chicago Central

Minneapolis Central

Minneapolis Central

San Francisco West

San Francisco West

San Francisco West

Los Angeles West

Los Angeles West
Basic Queries 2-7

Retrieving Specific Columns
Retrieving Specific Columns
By naming the columns in the select list of a SELECT statement, you can
retrieve a specific set of columns from any table. Columns are returned in the
order specified in the select list.

About the Query

The example query requests a list of districts and their corresponding regions
from the Market table.

Usage Notes

Although column names in the select list must be defined in the tables refer-
enced in the FROM clause, other expressions can also occur in the select list.
Several examples of such expressions are discussed later in this guide.

When the select list does not include all the columns in a table, a query might
return duplicate rows, as in the previous example query. You can eliminate
the duplicates by using the DISTINCT keyword. For example, the following
query returns only the names of distinct districts and regions in the Market
table:

select distinct district, region
from market;

District Region

Atlanta South

Boston North

Chicago Central

Los Angeles West

Minneapolis Central

 (1 of 2)
2-8 SQL Self-Study Guide

Using the WHERE Clause to Retrieve Specific Rows
Using the WHERE Clause to Retrieve Specific Rows

Question
What products are sold without packaging?

Example Query
select prod_name, pkg_type
from product
where pkg_type = 'No pkg';

Result

New Orleans South

New York North

San Francisco West

Prod_Name Pkg_Type

Veracruzano No pkg

Xalapa Lapa No pkg

Colombiano No pkg

Expresso XO No pkg

La Antigua No pkg

Lotta Latte No pkg

Cafe Au Lait No pkg

 (1 of 2)

District Region

 (2 of 2)
Basic Queries 2-9

Retrieving Specific Rows: WHERE Clause
Retrieving Specific Rows: WHERE Clause
By including a set of logical conditions in a query, you can retrieve a specific set
of rows from a table. Logical conditions are declared in the WHERE clause. If
a row satisfies the conditions, the query returns the row; if not, the row is
discarded. Logical conditions are also called search conditions, predicates,
constraints, or qualifications.

NA Lite No pkg

Aroma Roma No pkg

Demitasse Ms No pkg

Darjeeling Number 1 No pkg

Darjeeling Special No pkg

Assam Grade A No pkg

Assam Gold Blend No pkg

Earl Grey No pkg

English Breakfast No pkg

Irish Breakfast No pkg

Special Tips No pkg

Gold Tips No pkg

Breakfast Blend No pkg

Ruby's Allspice No pkg

Coffee Mug No pkg

Travel Mug No pkg

Aroma t-shirt No pkg

Aroma baseball cap No pkg

Prod_Name Pkg_Type

 (2 of 2)
2-10 SQL Self-Study Guide

Retrieving Specific Rows: WHERE Clause
The WHERE Clause

SELECT select_list
FROM table_list
[WHERE search_condition];

The square brackets ([]) indicate that the WHERE clause is optional.

About the Query

The example query retrieves and displays the names of products that are not
prepacked or packaged. Red Brick Decision Server evaluates the following
condition for each row of the Product table and returns only those rows that
satisfy the condition:

pkg_type = 'No pkg'

Usage Notes

A character literal is a character string enclosed within single quotes. To
represent a single quote in a character literal, use two single quotes (''). For
example:

'Scarlet O''Hara'

Character literals must be expressed as stored in the database—in either
uppercase or lowercase. For example, the decision server evaluates the
following condition:

class_type = 'Bulk_beans'

The condition is false when the referenced column contains the following
string:

'BULK_beans'

Set functions are not allowed in the WHERE clause. For more information
about set functions, refer to page 2-31.

search_condition This condition evaluates to true or false.
Basic Queries 2-11

Using the AND, NOT, and OR Connectives to Specify Compound Conditions
Using the AND, NOT, and OR Connectives to Specify
Compound Conditions

Question
What cities and districts are located in the southern or western regions?

Example Query
select hq_city, district, region
from market
where region = 'South' or region = 'West';

Result

HQ_City District Region

Atlanta Atlanta South

Miami Atlanta South

New Orleans New Orleans South

Houston New Orleans South

San Jose San Francisco West

San Francisco San Francisco West

Oakland San Francisco West

Los Angeles Los Angeles West

Phoenix Los Angeles West
2-12 SQL Self-Study Guide

Specifying Compound Conditions: AND, NOT, OR
Specifying Compound Conditions: AND, NOT, OR
Most queries written for decision-support analysis contain compound
conditions. Compound conditions are simple conditions joined by logical
connectives. SQL contains the following logical connectives.

The server evaluates compound conditions as follows: all the NOT operators
first, all the AND connectives second, and all the OR connectives last. This
evaluation order is commonly known as the order of precedence.

You can control the order of evaluation by grouping compound conditions
with parentheses. In a nest of parentheses, Red Brick Decision Server
evaluates the innermost set of parentheses first, the next innermost set next,
and so on. Whenever the logic of a compound condition is not obvious, make
it obvious with parentheses.

About the Query

The example query retrieves all cities and districts in the southern or western
regions. All rows that have South or West in their Region column satisfy the
compound condition and are returned in the result table.

Usage Notes

When in doubt about the order of evaluation, force the order by grouping
conditions with parentheses.

Connective Name Order of Precedence

() Parentheses (force order of evaluation) 1

AND And 3

NOT Negation 2

OR Or 4
Basic Queries 2-13

Using the AND Connective to Specify Complex Search Conditions
Using the AND Connective to Specify Complex
Search Conditions

Question
Which large or small Aroma stores are located in Los Angeles or San Jose?

Example Query
select store_type, store_name, city
from store
where (store_type = 'Large' or store_type = 'Small')

and (city = 'Los Angeles' or city = 'San Jose');

Result

Specifying Complex Search Conditions
Search conditions, especially those written for decision-support analysis, can
become complex. Though constructed from simple conditions that use the
logical connectives AND, OR, and NOT, complex conditions might be difficult
to understand. Fortunately, SQL is free-form, so the logical structure of these
conditions can be shown by using tab characters, blanks, and newline
characters to define white space and logical relationships.

Store_Type Store_Name City

Large San Jose Roasting Company San Jose

Large Beaches Brew Los Angeles

Small Instant Coffee San Jose
2-14 SQL Self-Study Guide

Specifying Complex Search Conditions
About the Query

The example query retrieves and displays the names of Aroma stores that are
both large or small and located in Los Angeles or San Jose.

The parentheses in this query are essential because the AND connective has a
higher precedence than the OR connective. If you remove the parentheses, the
query returns a different result table.

Usage Notes

A query retrieves and displays any data that is not explicitly excluded by its
search condition, and a query with only a few general conditions can return
an enormous number of rows.

Whenever you doubt how the server might evaluate a compound condition,
explicitly group the conditions with parentheses to force the order of
evaluation.

Store_Type Store_Name City

Large San Jose Roasting Company San Jose

Large Beaches Brew Los Angeles

Small Instant Coffee San Jose

Large Miami Espresso Miami

Large Olympic Coffee Company Atlanta
Basic Queries 2-15

Using the Greater-Than (>) and Less-Than or Equal-To (<=) Operators
Using the Greater-Than (>) and Less-Than or Equal-
To (<=) Operators

Question
Which cities and districts are identified by Mktkey values that are greater
than 4 and less than or equal to 12?

Example Query
select mktkey, hq_city, hq_state, district
from market
where mktkey > 4

and mktkey <= 12;

Result

Mktkey HQ_City HQ_State District

5 New York NY New York

6 Philadelphia PA New York

7 Boston MA Boston

8 Hartford CT Boston

9 Chicago IL Chicago

10 Detroit MI Chicago

11 Minneapolis MN Minneapolis

12 Milwaukee WI Minneapolis
2-16 SQL Self-Study Guide

Using Comparison Operators
Using Comparison Operators
Conditions evaluate to true or false and can be expressed with comparison
operators or comparison predicates. Comparison predicates are described on
the next two pages.

SQL contains the following comparison operators.

About the Query

The example query retrieves and displays all cities and districts whose
Mktkey is greater than 4 but less than or equal to 12.

The Mktkey column contains integer values, which are comparable to other
numeric values. If you compare an integer to a character, however, the server
returns an error message:

select mktkey, hq_city, hq_state, district
from market
where mktkey > '4';

** ERROR ** (19) Operands of comparison must have comparable
datatypes.

Operator Name

= equal

< less than

> greater than

<> not equal

>= greater than or equal

<= less than or equal
Basic Queries 2-17

Using the IN Comparison Predicate
Usage Notes

Conditions must compare values of comparable data types. If you attempt to
compare unlike data types, the server returns either an error message or an
incorrect result. Comparison operators can be used to compare one character
string with another, as the following legal condition illustrates:

(city > 'L')

For more information about comparable data types, refer to the SQL Reference
Guide.

Using the IN Comparison Predicate

Question
What cities are in the Chicago, New York, and New Orleans districts?

Example Query
select hq_city, hq_state, district
from market
where district in

('Chicago', 'New York', 'New Orleans');

Result

HQ_City HQ_State District

New Orleans LA New Orleans

Houston TX New Orleans

New York NY New York

 (1 of 2)
2-18 SQL Self-Study Guide

Using Comparison Predicates
Using Comparison Predicates
A simple condition can be expressed with the following SQL comparison
predicates:

Examples of the ALL, SOME or ANY, and EXISTS predicates are presented in
Chapter 4, “Comparison Queries.”

For syntax descriptions and examples of all these predicates, as well as
detailed definitions of simple and complex expressions, refer to the SQL
Reference Guide.

Philadelphia PA New York

Chicago IL Chicago

Detroit MI Chicago

Predicate

BETWEEN expression1 AND expression2

LIKE pattern

IN (list)

IS NULL

IS NOT NULL

ALL

SOME or ANY

EXISTS

HQ_City HQ_State District

 (2 of 2)
Basic Queries 2-19

Using the Percent Sign (%) Wildcard
About the Query
The example query lists all the cities in the Chicago, New York, and New
Orleans districts. It could also be written with the equals comparison operator
(=) and a set of OR conditions:

where district = 'Chicago'
or district = 'New York'
or district = 'New Orleans'

Usage Notes

Strive to write logical sets of conditions that are simple, easy to understand,
and easy to maintain. Always clarify the logical structure of your compound
conditions with ample white space, define logical blocks by indentation, and
force evaluation precedence with parentheses.

Using the Percent Sign (%) Wildcard

Question
Which cities are in districts that begin with the letters Min?

Example Query
select district, hq_city
from market
where district like 'Min%';

Result

District HQ_City

Minneapolis Minneapolis

Minneapolis Milwaukee
2-20 SQL Self-Study Guide

Using Wildcard Characters
Using Wildcard Characters
Previous queries have expressed conditions that match complete character
strings. With the LIKE predicate and the two wildcard characters (percent
sign (%) and underscore (_)), you can also express conditions that match a
portion of a character string (a substring).

The percent (%) wildcard matches any character string. For example:

■ like 'TOT%' is true for any string that begins with 'TOT'.

■ like '%ZERO%' is true for any string that contains 'ZERO'.

■ like '%FRESH' is true for any string that ends with 'FRESH' and does
not contain trailing blanks. Trailing blanks in character data are
deemed significant when LIKE constraints are applied.

The percent sign (%) can also be used to search for a null character string—
zero (0) characters.

The underscore wildcard (_) matches any one character in a fixed position.
For example:

■ like '_EE_' is true for any four-letter string whose two middle
characters are 'EE'.

■ like '%LE_N%' is true for any string that contains the pattern 'LE_N'.
The strings 'CLEAN', 'KLEEN', and 'VERY KLEEN' all match this pattern.

About the Query

The example query retrieves the names of all districts that begin with the
characters Min and lists the cities in these districts. The wildcard percent sign
(%) allows for any character combination (including blank spaces) after the n
in Min, but characters that precede the n must match the character pattern
exactly as stored.
Basic Queries 2-21

Using Simple Joins
Usage Notes

A LIKE condition is true when its pattern matches a substring in a column. If
the pattern contains no wildcard characters, the pattern must match the
column entry exactly. For example, the following condition is true only when
the column entry contains the character string APRIL and nothing else:

month like 'APRIL'

In other words, this condition is equivalent to:

month = 'APRIL'

The LIKE predicate can be used only on columns that contain character
strings.

Using Simple Joins

Question
What were the daily sales totals for Easter products sold on weekends on a
type 900 promotion in 1999 and which stores registered those sales?

Example Query 1
select prod_name, store_name, day, dollars
from promotion, product, period, store, sales
where promotion.promokey = sales.promokey

and product.prodkey = sales.prodkey
and product.classkey = sales.classkey
and period.perkey = sales.perkey
and store.storekey = sales.storekey
and prod_name like 'Easter%'
and day in ('SA', 'SU')
and promo_type = 900
and year = 1999;
2-22 SQL Self-Study Guide

Example Query 2
Example Query 2
select prod_name, store_name, day, dollars
from promotion natural join sales

natural join product
natural join period
natural join store

where prod_name like 'Easter%'
and day in ('SA', 'SU')
and promo_type = 900
and year = 1999;

Two Queries, Same Result

Joining Dimensions and Facts
So far, the queries in this chapter have retrieved data from a single table;
however, most queries join information from different tables. Typically,
dimension tables are joined to fact tables to constrain the facts in interesting
ways. For example, you can join the Sales fact table to its Store and Product
dimensions to get sales figures per product per store, or to its Period and
Product dimensions to get sales figures per product per week.

About the Queries

This business question requires a join of five tables in the Aroma retail
schema: the Sales fact table and its Product, Period, Store, and Promotion
dimensions.

To join tables in a query, you must give the database server explicit instruc-
tions on how to perform the join. In Example Query 1, the joins are specified
in the WHERE clause with five simple conditions that join the Sales table to
its dimensions over its five primary key columns. The Product table has a
two-part primary key, so it is joined to the Sales table over two columns:
Prodkey and Classkey.

Prod_Name Store_Name Day Dollars

Easter Sampler Basket Olympic Coffee Company SA 150.00
Basic Queries 2-23

Using the ORDER BY Clause
Because all of these conditions involve identically named joining columns, the
question can alternatively be posed in the style of Example Query 2, using
natural joins in the FROM clause. This approach to joining tables works well
with the Aroma database because its main tables form a simple star schema
and all the foreign-key columns use the same names as the primary keys they
reference.

Natural joins operate on all pairs of identically named columns shared by the
tables; therefore, in Example Query 2 the Sales and Product tables are joined
over both the Classkey column and the Prodkey column.

There are two other ways to join these tables in the FROM clause and get the
same result; for details, refer to Chapter 5, “Joins and Unions,” which
identifies the different types of join queries you can write and presents more
examples.

Usage Notes

Any two tables can be joined over columns with comparable data types; joins
are not dependent on the primary-key to foreign-key relationships used in
this example.

Using the ORDER BY Clause

Question
What were the sales figures for Assam Gold Blend and Earl Grey at the
Instant Coffee store during November 1999? Order the figures for each
product from highest to lowest.
2-24 SQL Self-Study Guide

Example Query
Example Query
select prod_name, store_name, dollars
from store natural join sales

 natural join product
 natural join period

where (prod_name like 'Assam Gold%'
or prod_name like 'Earl%')
and store_name like 'Instant%'
and month = 'NOV'
and year = 1999

order by prod_name, dollars desc;

Result

Prod_Name Store_Name Dollars

Assam Gold Blend Instant Coffee 96.00

Assam Gold Blend Instant Coffee 78.00

Assam Gold Blend Instant Coffee 66.00

Assam Gold Blend Instant Coffee 58.50

Assam Gold Blend Instant Coffee 58.50

Assam Gold Blend Instant Coffee 39.00

Assam Gold Blend Instant Coffee 39.00

Assam Gold Blend Instant Coffee 32.50

Earl Grey Instant Coffee 48.00

Earl Grey Instant Coffee 45.50

Earl Grey Instant Coffee 42.00

Earl Grey Instant Coffee 32.00

Earl Grey Instant Coffee 24.00

Earl Grey Instant Coffee 20.00
Basic Queries 2-25

Ordering the Result Table: ORDER BY Clause
Ordering the Result Table: ORDER BY Clause
You can use the ORDER BY clause to sort the result table of a query by the
values in one or more specified columns. The default sort order is ascending
(ASC); the DESC keyword changes the sort order to descending for the
specified column, as follows:

order by prod_name, 3 desc

To order results by an expression in the select list (for example, a set function),
specify a column alias for the expression and then name the alias in the
ORDER BY clause. For more information about column aliases, refer to
page 2-33.

Syntax of the ORDER BY clause

SELECT select_list
FROM table_list
[WHERE search_condition]
[ORDER BY order_list] ;

About the Query

The example query retrieves Assam Gold Blend and Earl Grey sales figures
at the Instant Coffee store during November 1999. The query sorts the results
by product and total daily sales.

Usage Notes

The ORDER BY clause must follow the other clauses in the SELECT statement
(except the SUPPRESS BY clause) and include a list of columns to be ordered.
A column can be referenced by its name, column alias, or position (ordinal
number) in the select list. For example, the ORDER BY clause on the facing
page could be written as follows:

order by prod_name, 3 desc

order_list A list of columns by which data is ordered. Columns in the
order_list need not occur in the select_list but must exist in tables
referenced in the FROM clause.
2-26 SQL Self-Study Guide

Calculating Subtotals
By specifying columns in order_list that are not in the select_list, you can order
data by columns that are not displayed in the result table.

Calculating Subtotals

Question
What were the daily sales and monthly subtotals for Assam Gold Blend,
Darjeeling Special, and Earl Grey teas at the Instant Coffee store during
November 1999? What is the monthly subtotal for all three products?

Example Query
select prod_name, store_name, dollars
from store natural join sales

natural join product
natural join period

where prod_name in ('Assam Gold Blend', 'Earl Grey',
'Darjeeling Special')
and store_name like 'Instant%'
and month = 'NOV'
and year = 1999

order by prod_name, dollars desc
break by prod_name summing 3;

Result

Prod_Name Store_Name Dollars

Assam Gold Blend Instant Coffee 96.00

Assam Gold Blend Instant Coffee 78.00

Assam Gold Blend Instant Coffee 66.00

Assam Gold Blend Instant Coffee 58.50

Assam Gold Blend Instant Coffee 58.50

 (1 of 2)
Basic Queries 2-27

Result
Assam Gold Blend Instant Coffee 39.00

Assam Gold Blend Instant Coffee 39.00

Assam Gold Blend Instant Coffee 32.50

Assam Gold Blend NULL 467.50

Darjeeling Special Instant Coffee 207.00

Darjeeling Special Instant Coffee 168.00

Darjeeling Special Instant Coffee 149.50

Darjeeling Special Instant Coffee 144.00

Darjeeling Special Instant Coffee 138.00

Darjeeling Special Instant Coffee 132.00

Darjeeling Special Instant Coffee 96.00

Darjeeling Special Instant Coffee 69.00

Darjeeling Special Instant Coffee 60.00

Darjeeling Special Instant Coffee 60.00

Darjeeling Special Instant Coffee 48.00

Darjeeling Special NULL 1271.50

Earl Grey Instant Coffee 48.00

Earl Grey Instant Coffee 45.50

Earl Grey Instant Coffee 42.00

Earl Grey Instant Coffee 32.00

Earl Grey Instant Coffee 24.00

Earl Grey Instant Coffee 20.00

Earl Grey NULL 211.50

NULL NULL 1950.50

Prod_Name Store_Name Dollars

 (2 of 2)
2-28 SQL Self-Study Guide

Calculating Subtotals: BREAK BY Clause
Calculating Subtotals: BREAK BY Clause
When a query contains an ORDER BY clause, you can use a BREAK BY clause
to add control breaks to the result set and calculate subtotals on numeric
columns. The BREAK BY clause also computes a grand total of the subtotals
and displays this value in the final row of the report. This clause is a RISQL
extension to the ANSI SQL-92 standard.

Syntax of the BREAK BY Clause

SELECT select_list
FROM table_list
[WHERE search_condition]
[ORDER BY order_list]

[BREAK BY order_reference SUMMING select_reference_list];

About the Query

The example query lists the daily totals for three tea products at the Instant
Coffee store in November 1999. A subtotal of the sales figures is calculated for
each product, and the grand total for all three products is displayed at the end
of the report. The order_reference is Prod_Name and the select_reference_list
consists of a single column reference (3, which refers to the Dollars column).

Usage Notes

As well as performing simple aggregate calculations on ordered sets of rows,
the BREAK BY clause makes the contents of a long result set easier to read and
absorb.

If the query contains a RISQL display function, the ORDER BY clause can
contain another RISQL extension, the RESET BY subclause. For more details,
refer to page 3-11.

A query that includes a BREAK BY clause cannot be used as a query
expression in an INSERT INTO...SELECT statement.

order_reference A column used in the order_list.

select_reference_list A numeric expression used in the select_list.
Basic Queries 2-29

Using the SUM, AVG, MAX, MIN, COUNT Set Functions
Using the SUM, AVG, MAX, MIN, COUNT Set
Functions

Question
What were the total Lotta Latte sales figures in Los Angeles for 1999? What
were the average, maximum, and minimum daily sales figures for that year,
and how many daily totals were counted to produce these aggregate values?

Example Query
select sum(dollars), avg(dollars), max(dollars), min(dollars),

count(*)
from store natural join sales

natural join period
natural join product

where prod_name like 'Lotta Latte%'
and year = 1999
and city like 'Los Ang%';

Result

Sum Avg Max Min Count

13706.50 171.33125000 376.00 39.00 80
2-30 SQL Self-Study Guide

Using Set Functions
Using Set Functions
Set functions operate on groups of values. For example, SUM(dollars) calcu-
lates the total dollars returned in a result table, and AVG(dollars) returns the
average. The SQL set functions listed in the following table can occur one or
more times in the select list.

You can replace expression with any column name or numeric expression.
Each function, except COUNT(*), ignores NULL values when calculating the
returned aggregate value.

About the Query

The example query retrieves sales figures for Lotta Latte in Los Angeles
during 1999. The result set also includes the average, maximum, and
minimum sales during the year, and the number of daily totals on which
those calculations are based.

Function Description

SUM(expression) Calculates the sum of all the values in expression.

SUM(DISTINCT expression) Calculates the sum of distinct values in expression.

AVG(expression) Calculates the average of all the values in
expression.

AVG(DISTINCT expression) Calculates the average of distinct values in
expression.

MAX(expression) Determines the maximum value in expression.

MIN(expression) Determines the minimum value in expression.

COUNT(*) Counts the number of rows returned.

COUNT(expression) Counts the number of non-null values in expression.

COUNT(DISTINCTexpression) Counts the number of distinct non-null values in
expression.
Basic Queries 2-31

Using Column Aliases
Usage Notes

If the result set will contain individual values as well as aggregate values, the
query must contain a GROUP BY clause. For more information about the
GROUP BY clause, refer to page 2-35.

Set functions can be used as arguments to RISQL display functions; however,
display functions cannot be used as arguments to set functions. (Display
functions are discussed in Chapter 3, “Data Analysis.”

Using Column Aliases

Question
What were the annual Lotta Latte sales figures in Los Angeles stores during
1999? What were the average, maximum, and minimum sales figures during
this time period, and how many daily totals were counted in these aggregate
values? Specify headings for the aggregate result columns.

Example Query
select sum(dollars) as dol_sales, avg(dollars) as avg_sales,

max(dollars) as max_dol, min(dollars) as min_dol,
count(*) as num_items

from store natural join sales
natural join period
natural join product

where prod_name like 'Lotta Latte%'
and year = 1999
and city like 'Los Ang%';

Result

Dol_Sales Avg_Sales Max_Dol Min_Dol Num_Items

13706.50 171.33125000 376.00 39.00 80
2-32 SQL Self-Study Guide

Using Column Aliases: AS
Using Column Aliases: AS
By default, the SELECT command returns values calculated by set functions
but does not label the returned values with headings. You can specify a label,
or column alias, for any column with the keyword AS followed by a character
string. This alias can then be referenced in later clauses in the query.

For example, the following AS clause assigns the alias Dol_Sales to the
Dollars column:

dollars as dol_sales

Column aliases are most useful when used to reference expressions from the
select list in later clauses, as shown on page 2-35.

About the Query

The example query returns the same result set as the previous query in this
chapter; however, in this case, column aliases are assigned to create headings
for the aggregated results.

Usage Notes

To improve the readability of your result tables, assign column aliases to all
set functions that occur in your query select list.

An alias is a database identifier; it must begin with a letter and have a
maximum length of 128 characters. Zero or more letters, digits, or under-
scores can follow the initial letter. A keyword cannot serve as a database
identifier. For more details, refer to the SQL Reference Guide.

A column alias can occur anywhere in a SELECT statement to designate the
column to which it refers (for example, in a WHERE, ORDER BY, GROUP BY, or
HAVING clause).

Important: If the value contained in the column referenced by the column alias is the
result of a set function, it cannot occur in the WHERE clause; however, it can occur
in the HAVING clause.
Basic Queries 2-33

Using the GROUP BY Clause to Group Rows
Using the GROUP BY Clause to Group Rows

Question
What were the annual totals for sales of coffee mugs in 1998 in each district?
What were the average, maximum, and minimum sales during this time
period? List the results by district.

Example Query
select district as district_city, sum(dollars) as dol_sales,

avg(dollars) as avg_sales, max(dollars) as max_sales,
min(dollars) as min_sales

from market natural join store
 natural join sales
 natural join period
 natural join product

where prod_name like '%Mug%'
and year = 1998
group by district_city
order by dol_sales desc;

Result

District_City Dol_Sales Avg_Sales Max_Sales Min_Sales

Atlanta 1378.30 35.34102564 98.55 4.00

Los Angeles 711.60 30.93913043 98.55 9.95

San Francisco 410.45 25.65312500 54.75 5.00
2-34 SQL Self-Study Guide

Grouping Rows: GROUP BY Clause
Grouping Rows: GROUP BY Clause
Set functions operate on all rows of a result table or on groups of rows
defined by a GROUP BY clause. For example, you can group the sales for each
market and calculate the respective sum, maximum, and minimum values.

Syntax of the GROUP BY Clause

SELECT select_list
FROM table_list
[WHERE search_condition]
[GROUP BY group_list]
[ORDER BY order_list]

[BREAK BY order_reference SUMMING
select_reference_list];

About the Query

The example query retrieves annual sales totals for coffee mugs in 1998 (they
are sold in three districts only), ordering the figures from highest to lowest.
Conceptually speaking, the server processes this query as follows:

1. Retrieves all rows of data from tables specified in the FROM clause,
joins the rows from separate tables, and generates an intermediate
result table.

2. Retains all rows from the intermediate result table that satisfy the
search condition specified in the WHERE clause.

3. Divides the result table into groups specified in the GROUP BY clause.

4. Processes all set functions on specified groups for the entire result
table.

5. Orders results according to the ORDER BY clause.

6. Returns only those columns specified in the select list.

group_list A list of column names (either in select_list or in tables listed in
the FROM clause) or column aliases in select_list. All nonaggre-
gated columns in select_list must appear in group_list.
Basic Queries 2-35

Using the GROUP BY Clause to Produce Multiple Groups
Usage Notes

You can accelerate the performance of aggregate queries, queries that contain
set functions or GROUP BY clauses, with the Informix Vista query rewrite
system. For details, refer to the Informix Vista User’s Guide.

An ORDER BY clause references items in the select list by column name,
column alias, or position. However, if the item in the order list is a set
function, it must be referenced by its alias (Dol_Sales) or position number
because it has no column name. For more information about column aliases,
refer to page 2-33.

Using the GROUP BY Clause to Produce Multiple
Groups

Question
What were the total sales in each city during 1998 and 1999? List city names
by year within their region and district.

Example Query
select year, region, district, city, sum(dollars) as sales
from market natural join store

natural join sales
natural join product
natural join period

where year in (1998, 1999)
group by year, region, district, city
order by year, region, district, city;
2-36 SQL Self-Study Guide

Result
Result

Year Region District City Sales

1998 Central Chicago Chicago 133462.75

1998 Central Chicago Detroit 135023.50

1998 Central Minneapolis Milwaukee 172321.50

1998 North Boston Boston 184647.50

1998 North Boston Hartford 69196.25

1998 North New York New York 181735.00

1998 North New York Philadelphia 172395.75

1998 South Atlanta Atlanta 230346.45

1998 South Atlanta Miami 220519.75

1998 South New Orleans Houston 183853.75

1998 South New Orleans New Orleans 193052.25

1998 West Los Angeles Los Angeles 219397.20

1998 West Los Angeles Phoenix 192605.25

1998 West San Francisco Cupertino 180088.75

1998 West San Francisco Los Gatos 176992.75

1998 West San Francisco San Jose 395330.25

1999 Central Chicago Chicago 131263.00

1999 Central Chicago Detroit 136903.25

1999 Central Minneapolis Milwaukee 173844.25

1999 Central Minneapolis Minneapolis 132125.75

1999 North Boston Boston 189761.00

1999 North Boston Hartford 135879.50

 (1 of 2)
Basic Queries 2-37

Nesting Grouped Results: GROUP BY Clause
Nesting Grouped Results: GROUP BY Clause
When several column names occur in a GROUP BY clause, the result table is
divided into groups within groups. For example, if you specify column
names for year, region, and district in the GROUP BY clause, the returned
figures are divided by year, each year is divided by region, and each region
is divided by district.

1999 North New York New York 171749.75

1999 North New York Philadelphia 171759.50

1999 South Atlanta Atlanta 229615.05

1999 South Atlanta Miami 234458.90

1999 South New Orleans Houston 186394.25

1999 South New Orleans New Orleans 190441.75

1999 West Los Angeles Los Angeles 228433.00

1999 West Los Angeles Phoenix 197044.50

1999 West San Francisco Cupertino 196439.75

1999 West San Francisco Los Gatos 175048.75

1999 West San Francisco San Jose 398829.10

Year Region District City Sales

 (2 of 2)
2-38 SQL Self-Study Guide

Nesting Grouped Results: GROUP BY Clause
Syntax of the GROUP BY Clause

SELECT select_list
FROM table_list
[WHERE search_condition]
[GROUP BY group_list]
[ORDER BY order_list]

[BREAK BY order_reference SUMMING
select_reference_list];

About the Query

The example query retrieves annual sales of all products for each city during
1998 and 1999. The sales figures are both grouped and ordered by year,
region, district, and city.

Important: The cities referred to in this query are the city locations of each store, as
defined in the Store table, not the cities defined as hq_cities in the Market table.

Usage Notes

If the select list includes an aggregation function but the query has no
GROUP BY clause, all column references must be aggregation functions.

group_list A list of column names (in either the select_list or the tables in
the table_list) or column aliases in the select_list. Columns that do
not participate in a set function (nonaggregate columns) in the
select_list must appear in the group_list.
Basic Queries 2-39

Using the Division Operator (/)
Using the Division Operator (/)

Question
What was the average price per sale of each product during 1998? Calculate
the average as the total sales dollars divided by the total sales quantity.

Example Query
select prod_name, sum(dollars) as total_sales,

sum(quantity) as total_qty,
string(sum(dollars)/sum(quantity), 7, 2) as price

from product natural join sales
natural join period

where year = 1998
group by prod_name
order by price;

Result

Prod_Name Total_Sales Total_Qty Price

Gold Tips 38913.75 11563 3.36

Special Tips 38596.00 11390 3.38

Earl Grey 41137.00 11364 3.61

Assam Grade A 39205.00 10767 3.64

Breakfast Blend 42295.50 10880 3.88

English Breakfast 44381.00 10737 4.13

Irish Breakfast 48759.00 11094 4.39

Coffee Mug 1054.00 213 4.94

Darjeeling Number 1 62283.25 11539 5.39

Ruby's Allspice 133188.50 23444 5.68

 (1 of 2)
2-40 SQL Self-Study Guide

Result
Assam Gold Blend 71419.00 11636 6.13

Colombiano 188474.50 27548 6.84

Aroma Roma 203544.00 28344 7.18

La Antigua 197069.50 26826 7.34

Veracruzano 201230.00 26469 7.60

Expresso XO 224020.00 28558 7.84

Aroma baseball cap 15395.35 1953 7.88

Lotta Latte 217994.50 26994 8.07

Cafe Au Lait 213510.00 26340 8.10

Aroma Sounds Cassette 5206.00 620 8.39

Xalapa Lapa 251590.00 29293 8.58

NA Lite 231845.00 25884 8.95

Demitasse Ms 282385.25 28743 9.82

Aroma t-shirt 20278.50 1870 10.84

Travel Mug 1446.35 133 10.87

Darjeeling Special 127207.00 10931 11.63

Spice Sampler 6060.00 505 12.00

Aroma Sounds CD 7125.00 550 12.95

French Press, 2-Cup 3329.80 224 14.86

Spice Jar 4229.00 235 17.99

French Press, 4-Cup 3323.65 167 19.90

Tea Sampler 13695.00 550 24.90

...

Prod_Name Total_Sales Total_Qty Price

 (2 of 2)
Basic Queries 2-41

Using the Arithmetic Operators: (), +, –, *, /
Using the Arithmetic Operators: (), +, –, *, /
You can perform arithmetic operations within a select list or within a search
condition. A complete set of arithmetic operators is listed in the following
table. The order of evaluation precedence is from highest to lowest (top to
bottom) and, within a given level, left to right, in the table:

If you have any doubt about the order of evaluation for a given expression,
group the expression with parentheses. For example, the server evaluates
(4 + 3 * 2) as 10 but evaluates the grouped expression ((4 + 3) * 2) as 14.

Usage Notes

This query would normally return long-numeric values for the Price column.
The STRING scalar function is used to remove all but two of the decimal
places from each Price value:

string(sum(dollars)/sum(quantity), 7, 2) as price

For more information about the STRING function and other scalar functions,
refer to the SQL Reference Guide.

Operator Name

() Forces order of evaluation

+, – Positive and negative

*, / Multiplication and division

+, – Addition and subtraction
2-42 SQL Self-Study Guide

Using the HAVING Clause to Exclude Groups
Using the HAVING Clause to Exclude Groups

Question
Which products had total sales of less than $25,000 during 1999? How many
individual sales were made?

Example Query
select prod_name, sum(dollars) as total_sales,

sum(quantity) as total_units
from product natural join sales

natural join period
where year = 1999
group by prod_name
having total_sales < 25000
order by total_sales desc;

Result

Prod_Name Total_Sales Total_Units

Aroma t-shirt 21397.65 1967

Espresso Machine Royale 18119.80 324

Espresso Machine Italiano 17679.15 177

Coffee Sampler 16634.00 557

Tea Sampler 14907.00 597

Aroma baseball cap 13437.20 1696

Aroma Sheffield Steel Teapot 8082.00 270

Spice Sampler 7788.00 649

Aroma Sounds CD 5937.00 459

Aroma Sounds Cassette 5323.00 630

 (1 of 2)
Basic Queries 2-43

Conditions on Groups: HAVING Clause
Conditions on Groups: HAVING Clause
Although dividing data into groups reduces the amount of information
returned, queries often still return more information than you need. You can
use a HAVING clause to exclude groups that fail to satisfy a specified
condition, such as sums of dollars that are less than or higher than a given
number.

This query calculates the total sales revenue for each product in 1999, then
retains only those products whose totals fall below $25,000.

Syntax of the HAVING Clause

SELECT select_list
FROM table_list
[WHERE search_condition]
[GROUP BY group_list]
[HAVING condition]
[ORDER BY order_list]

[BREAK BY order_reference SUMMING
select_reference_list];

French Press, 4-Cup 4570.50 230

Spice Jar 4073.00 227

French Press, 2-Cup 3042.75 205

Travel Mug 1581.75 145

Easter Sampler Basket 1500.00 50

Coffee Mug 1258.00 256

Christmas Sampler 1230.00 41

condition An SQL condition that can include set functions.

Prod_Name Total_Sales Total_Units

 (2 of 2)
2-44 SQL Self-Study Guide

Removing Rows That Contain NULLs, Zeroes, and Spaces
The HAVING clause differs from the WHERE clause in the following ways.

Usage Notes

Any set function can be referenced in a condition in the HAVING clause. A
query with a HAVING clause must contain a GROUP BY clause unless the
select list contains only set functions. For example:

select min(prodkey), max(classkey)
from product
having min(prodkey) = 0;

Removing Rows That Contain NULLs, Zeroes, and
Spaces

Question
What is the average discount applied to orders received from each Aroma
supplier?

Example Query 1
select name as supplier,

dec(sum(discount)/count(order_no),7,2) as avg_deal
from supplier natural join orders

natural join deal
group by supplier
order by avg_deal desc;

WHERE Clause HAVING Clause

Works on rows of data prior to
grouping.

Works on the result set after grouping.

Conditions cannot be expressed with
set functions (for example, SUM or
AVG), but column aliases for nonag-
gregate expressions can be used.

Conditions can be expressed with any set
function or column alias.
Basic Queries 2-45

Result
Result

Example Query 2
select name as supplier,

dec(sum(discount)/count(order_no),7,2) as avg_deal
from supplier natural join orders

natural join deal
group by supplier
order by avg_deal desc
suppress by 2;

Result

Supplier Avg_Deal

Espresso Express 500.00

Western Emporium 66.66

Aroma West Mfg. 50.00

CB Imports 47.50

Leaves of London 40.00

Tea Makers, Inc. 20.00

Colo Coffee 0.00

Aroma East Mfg. 0.00

Crashing By Design 0.00

Supplier Avg_Deal

Espresso Express 500.00

Western Emporium 66.66

Aroma West Mfg. 50.00

 (1 of 2)
2-46 SQL Self-Study Guide

Removing Blank Rows: SUPPRESS BY Clause
Removing Blank Rows: SUPPRESS BY Clause
If one or more columns in the data retrieved by a query contain NULLs,
spaces, or zeroes, you can use a SUPPRESS BY clause to remove those rows
from the final result set. This clause is a RISQL extension to the ANSI SQL-92
standard.

Syntax of the SUPPRESS BY Clause

SELECT select_list
FROM table_list
[WHERE search_condition]
[GROUP BY group_list]
[HAVING condition]
[ORDER BY order_list]

[BREAK BY order_reference SUMMING select_reference_list]
[SUPPRESS BY column_list];

About the Queries

The first example query retrieves a complete list of Aroma suppliers, whether
or not they have given discounts on orders. Consequently, the result set lists
three suppliers whose average deal amounts to zero dollars.

The second example removes those three suppliers from the result set by
suppressing rows that contain 0.00 in column 2 (Avg_Deal).

CB Imports 47.50

Leaves of London 40.00

Tea Makers, Inc. 20.00

column_list A list of column names or aliases from the select_list or a list of
positional numbers that specify those columns.

Supplier Avg_Deal

 (2 of 2)
Basic Queries 2-47

Summary
Usage Notes

The DEC scalar function truncates the long-numeric values for the Avg_Deal
column. Unlike the STRING function, which is described on page 2-42, the
DEC function converts the average values to more precise decimal values (not
character strings).

The SUPPRESS BY clause is applied before any RISQL display functions in the
query are computed. Consequently, you cannot suppress rows by referencing
a column that contains a display function. For examples of queries that
include display functions, refer to Chapter 3, “Data Analysis.”

Summary

The SELECT Statement
SELECT select_list
FROM table_list
[WHERE search_condition]
[GROUP BY group_list]
[HAVING search_condition]
[ORDER BY order_list]

[BREAK BY order_reference SUMMING select_reference_list]
[SUPPRESS BY column_list];

Logical Connectives
() parentheses (force order of evaluation)

NOT negation

AND and

OR or
2-48 SQL Self-Study Guide

Comparison Operators
Comparison Operators

Comparison Predicates

This chapter discussed how to express many commonly asked business
questions as SELECT statements and how to retrieve, group, and order data
selected from one or more relational tables. This chapter also showed how to
perform aggregate calculations such as sums, averages, minimums, and
maximums, how to calculate subtotals with the BREAK BY clause, and how to
use the SUPPRESS BY clause to remove rows that contain zeroes, NULLs, or
space characters.

= equal

< less than

> greater than

<> not equal

>= greater than or equal

<= less than or equal

BETWEEN expression1 AND expression2

LIKE pattern

IN (list)

IS NULL

IS NOT NULL
Basic Queries 2-49

Comparison Predicates
Most questions discussed in this chapter are easily expressed as standard
SELECT statements and challenge neither the user nor SQL. The remaining
chapters of this guide address more difficult questions, questions that require
sequential processing, comparisons of aggregated values, more complex join
specifications, or lengthy SELECT statements.

The next chapter shows how you can use RISQL extensions to answer
business questions that require sequential processing.
2-50 SQL Self-Study Guide

3
Chapter
Data Analysis
In This Chapter . 3-3

RISQL Display Functions. 3-4

Using RISQL Display Functions 3-4
Usage Notes . 3-5

Using the CUME() Function. 3-5
Cumulative Totals: CUME 3-7

Using CUME with RESET BY 3-9
Resetting Cumulative Totals: RESET BY Subclause 3-10

Using the MOVINGAVG() Function 3-12
Calculating Moving Averages: MOVINGAVG 3-14

Using the MOVINGSUM Function 3-15
Calculating Moving Sums: MOVINGSUM 3-17

Using the RANK Function 3-18
Ranking Data: RANK 3-19

Using the RANK, WHEN Function 3-20
Ranking the Top Ten: RANK, WHEN 3-21

Using the NTILE Function 3-22
Ranking Values in Groups: NTILE 3-23

Using the NTILE Function with a CASE Expression 3-24
Ranking Values in Unequal Groups: CASE and NTILE 3-26

Using the TERTILE Function 3-28
Ranking Values as High, Middle, or Low: TERTILE 3-29

3-2 SQL
Using the RATIOTOREPORT Function 3-30
Calculating Ratios as Percentages: RATIOTOREPORT*100 3-31

Using the DATEADD Function 3-32
Incrementing or Decrementing Dates: DATEADD 3-34

Using the DATEDIFF Function 3-36
Calculating Elapsed Days: DATEDIFF 3-37

Using the EXTRACT Function 3-38
Displaying Dateparts as Integers: EXTRACT. 3-40

Summary . 3-41
RISQL Display Functions 3-41
CASE Expressions 3-41
DATETIME Functions 3-42
 Self-Study Guide

In This Chapter
This chapter describes how to write queries that require some kind of data
analysis. Many of the queries contain sequential calculations, or calculations
that operate on an ordered set of rows—queries frequently encountered
during business analysis. For example:

■ What is the cumulative total (or running sum) by month?

■ What is the moving average by week?

■ How do monthly sales figures rank with one another?

■ What is the ratio of current month sales to annual sales?

Standard SQL cannot perform these types of calculations, so analysts
typically retrieve all the data required for the calculation and then perform
sequential calculations with a client tool. This process can be laborious and
time consuming. Informix provides RISQL display functions as a solution to
this problem. With these functions, sequential calculations are performed
quickly and easily on the server and only the results you want are returned
to your data-analysis application.

This chapter also shows how to use scalar functions to calculate and extract
date information from DATETIME columns.
Data Analysis 3-3

RISQL Display Functions
RISQL Display Functions

Using RISQL Display Functions
RISQL display functions operate on sets of rows and perform sequential
calculations. For example, the function CUME(dollars) returns a cumulative
total of dollars for each row of a result table.

Within a SELECT statement, RISQL display functions can be used:

■ In the select list

■ In an expression

■ As arguments of scalar functions

■ As a condition in a WHEN clause

■ In a subquery

RISQL display functions cannot be used:

■ As arguments of set functions

■ In the search condition of a WHERE clause

Function Name and Syntax Purpose

CUME(expression) Calculate a cumulative sum (running total).

MOVINGAVG(expression, n) Calculate an average of the previous n-rows.

MOVINGSUM(expression, n) Calculate a sum of the previous n rows.

NTILE(expression, n) Determine an n-level rank of values.

RANK(expression) Determine a numeric rank of values.

RATIOTOREPORT(expression) Calculate a ratio of portion to total.

TERTILE(expression) Determine a three-level rank of values (high,
middle, and low).
3-4 SQL Self-Study Guide

Usage Notes
Although these functions are not defined by the ANSI SQL-92 standard, they
are valuable because they are efficient, fast, easy to use, and they simplify the
expression of commonly asked business questions.

Usage Notes
Most of the RISQL display functions are order-dependent; that is, they
operate on an ordered result set. Therefore, queries containing these
functions typically contain an ORDER BY clause. RISQL display functions are
calculated after the processing of the ORDER BY is complete.

Many of the queries in this chapter rely on aggregated sales totals. Because the
Sales table stores only daily totals, it would be useful to create aggregate
tables to answer these queries. For more information about how to accelerate
the performance of aggregate queries, refer to the Informix Vista User’s Guide
for instructions on creating and using aggregate tables.

Using the CUME() Function

Question
What were the daily sales figures for Aroma Roma coffee during January,
2000? What were the cumulative subtotals for dollars and quantities during
the month?

Example Query
select date, sum(dollars) as total_dollars,

cume(sum(dollars)) as run_dollars,
sum(quantity) as total_qty,
cume(sum(quantity)) as run_qty

from period natural join sales
natural join product

where year = 2000
and month = 'JAN'
and prod_name = 'Aroma Roma'

group by date
order by date;
Data Analysis 3-5

Result
Result

Date Total_Dollars Run_Dollars Total_Qty Run_Qty

2000-01-02 855.50 855.50 118 118

2000-01-03 536.50 1392.00 74 192

2000-01-04 181.25 1573.25 25 217

2000-01-05 362.50 1935.75 50 267

2000-01-06 667.00 2602.75 92 359

2000-01-07 659.75 3262.50 91 450

2000-01-08 309.50 3572.00 54 504

2000-01-09 195.75 3767.75 27 531

2000-01-10 420.50 4188.25 58 589

2000-01-11 547.50 4735.75 78 667

2000-01-12 536.50 5272.25 74 741

2000-01-13 638.00 5910.25 88 829

2000-01-14 1057.50 6967.75 150 979

2000-01-15 884.50 7852.25 122 1101

2000-01-16 761.25 8613.50 105 1206

2000-01-17 455.50 9069.00 66 1272

2000-01-18 768.50 9837.50 106 1378

2000-01-19 746.75 10584.25 103 1481

2000-01-20 261.00 10845.25 36 1517

2000-01-21 630.75 11476.00 87 1604

2000-01-22 813.75 12289.75 115 1719

...
3-6 SQL Self-Study Guide

Cumulative Totals: CUME
Cumulative Totals: CUME
The RISQL CUME function calculates and displays running totals. Although a
standard SQL SELECT statement can calculate and display sales figures for a
given period of time, it cannot calculate a cumulative total on a result set.

CUME Function

To calculate a cumulative total, place a CUME function in the select list for
each numeric column to be summed:

CUME(expression)

About the Query

The example query calculates the daily sales figures and quantities for
Aroma Roma coffee during January of 2000. The query also calculates and
displays cumulative totals for those values.

An ORDER BY clause specifies mon to ensure that the result is returned in
chronological order.

Usage Notes

Never make assumptions about the order of a result table. If the months are
not in chronological order, the running totals you receive might be incorrect.
Running totals are sequentially computed subtotals. To obtain the correct
running totals, always include an ORDER BY clause in queries that contain
RISQL display functions.

expression A column name or a numeric expression.
Data Analysis 3-7

Cumulative Totals: CUME
The CUME function maintains a running total for a numeric expression that
might, but does not have to, contain a column reference. For example:

select cume(1) as row_num, order_no, price from orders;

When a column reference occurs in the expression, it must be a numeric
column.

When a query contains a GROUP BY clause, each expression in the select list
must either reference one of the columns that occurs in the GROUP BY clause
or be an SQL set function or RISQL display function.

An ORDER BY clause is included to ensure that the CUME function operates
on an ordered set of rows. Columns used in ORDER BY clauses must exist in
the GROUP BY clause; therefore, this result set is both grouped and ordered
by the Date column.

Row_Num Order_No Price

 1 3600 1200.46

 2 3601 1535.94

 3 3602 780.00

...
3-8 SQL Self-Study Guide

Using CUME with RESET BY
Using CUME with RESET BY

Question
What were the cumulative daily Aroma Roma sales figures during each week
of January, 2000?

Example Query
select week, date, sum(dollars) as total_dollars,

cume(sum(dollars)) as run_dollars,
sum(quantity) as total_qty,
cume(sum(quantity)) as run_qty

from period natural join sales
natural join product

where year = 2000
and month = 'JAN'
and prod_name = 'Aroma Roma'

group by week, date
order by week, date

reset by week;

Result

Week Date Total_Dollars Run_Dollars Total_Qty Run_Qty

2 2000-01-02 855.50 855.50 118 118

2 2000-01-03 536.50 1392.00 74 192

2 2000-01-04 181.25 1573.25 25 217

2 2000-01-05 362.50 1935.75 50 267

2 2000-01-06 667.00 2602.75 92 359

2 2000-01-07 659.75 3262.50 91 450

2 2000-01-08 309.50 3572.00 54 504

3 2000-01-09 195.75 195.75 27 27

 (1 of 2)
Data Analysis 3-9

Resetting Cumulative Totals: RESET BY Subclause
Resetting Cumulative Totals: RESET BY Subclause
You can reset the calculation of cumulative subtotals for multiple columns by
including a RESET BY subclause in the ORDER BY clause. This subclause resets
running totals to zero whenever the values in the specified columns change.
Client tools often refer to such changes as control breaks or programmed breaks.

3 2000-01-10 420.50 616.25 58 85

3 2000-01-11 547.50 1163.75 78 163

3 2000-01-12 536.50 1700.25 74 237

3 2000-01-13 638.00 2338.25 88 325

3 2000-01-14 1057.50 3395.75 150 475

3 2000-01-15 884.50 4280.25 122 597

4 2000-01-16 761.25 761.25 105 105

4 2000-01-17 455.50 1216.75 66 171

4 2000-01-18 768.50 1985.25 106 277

4 2000-01-19 746.75 2732.00 103 380

4 2000-01-20 261.00 2993.00 36 416

4 2000-01-21 630.75 3623.75 87 503

4 2000-01-22 813.75 4437.50 115 618

...

Week Date Total_Dollars Run_Dollars Total_Qty Run_Qty

 (2 of 2)
3-10 SQL Self-Study Guide

Resetting Cumulative Totals: RESET BY Subclause
RESET BY Subclause

The RESET BY subclause must occur within an ORDER BY clause:

SELECT select_list
FROM table_list
[WHERE search_condition]
[GROUP BY group_list]
[HAVING search_condition]
[ORDER BY order_list

[RESET BY reset_list]]
[BREAK BY order_reference SUMMING select_reference_list]

[SUPPRESS BY column_list];

About the Query

The example query calculates running totals for sales of Aroma Roma coffee
during January, 2000. The RESET BY subclause resets the running total to zero
when the Week value changes. To do this, the query must be ordered and
grouped by the Week column; therefore, the Week column occurs in all three
clauses: GROUP BY, ORDER BY, and RESET BY.

The blank line in the result set was produced by using the RISQL Reporter-
command SET COLUMN column_name SKIP LINE.

Usage Notes

Columns referenced in the RESET BY subclause must occur in the select list
and the ORDER BY clause. Positional references to columns in the select list
can be used in the ORDER BY and RESET BY clauses but not in the GROUP BY
clause.

For more information about the ORDER BY clause, refer to page 2-24.

reset_list One or more columns listed in the select list.
Data Analysis 3-11

Using the MOVINGAVG() Function
Using the MOVINGAVG() Function

Question
What was the three-week moving average of product sales at San Jose and
Miami stores during the third quarter of 1999?

Example Query
select city, week, sum(dollars) as sales,

string(movingavg(sum(dollars), 3), 7, 2) as mov_avg,
cume(sum(dollars)) as run_sales

from store natural join sales natural join period
where qtr = 'Q3_99' and city in ('San Jose', 'Miami')
group by city, week
order by city, week

reset by city;

Result

City Week Sales Mov_avg Run_sales

Miami 27 1838.55 NULL 1838.55

Miami 28 4482.15 NULL 6320.70

Miami 29 4616.70 3645.80 10937.40

Miami 30 4570.35 4556.40 15507.75

Miami 31 4681.95 4623.00 20189.70

Miami 32 3004.50 4085.60 23194.20

Miami 33 3915.9 3867.45 27110.10

Miami 34 4119.35 3679.91 31229.45

Miami 35 2558.90 3531.38 33788.35

 (1 of 2)
3-12 SQL Self-Study Guide

Result
Miami 36 4556.25 3744.83 38344.60

Miami 37 5648.50 4254.55 43993.10

Miami 38 5500.25 5235.00 49493.35

Miami 39 4891.40 5346.71 54384.75

Miami 40 3693.80 4695.15 58078.55

San Jose 27 3177.55 NULL 3177.55

San Jose 28 5825.80 NULL 9003.35

San Jose 29 8474.80 5826.05 17478.15

San Jose 30 7976.60 7425.73 25454.75

San Jose 31 7328.65 7926.68 32783.40

San Jose 32 6809.75 7371.66 39593.15

San Jose 33 7116.35 7084.91 46709.50

San Jose 34 6512.35 6812.81 53221.85

San Jose 35 6911.50 6846.73 60133.35

San Jose 36 5996.10 6473.31 66129.45

San Jose 37 10000.60 7636.06 76130.05

San Jose 38 7274.70 7757.13 83404.75

San Jose 39 9021.15 8765.48 92425.90

San Jose 40 5045.20 7113.68 97471.10

City Week Sales Mov_avg Run_sales

 (2 of 2)
Data Analysis 3-13

Calculating Moving Averages: MOVINGAVG
Calculating Moving Averages: MOVINGAVG
Sales figures fluctuate over time; when they fluctuate radically, they obscure
underlying, long-range trends. Moving averages are used to smooth the
effects of these fluctuations. For example, a three-week moving average
divides the sum of the last three consecutive weekly aggregations by three.

MOVINGAVG Function

To calculate a moving average, place a MOVINGAVG function in the select list
for each numeric column to be averaged. The function refers to a column or
numeric expression to be averaged and an integer representing the number
of rows to average:

MOVINGAVG(n_expression, n)

About the Query

The example query calculates a three-week average for sales at San Jose and
Miami stores during the third quarter of 1999. A control break is triggered by
a RESET BY subclause on the City column. Three weeks must pass before a
three-week moving average can be calculated; consequently, the first two
rows following each control break contain NULLs.

The result table must be fully ordered, and the moving average must be reset
when the city changes. If the rows are not in chronological order, the moving
average function returns incorrect results. Therefore, the ORDER BY clause
includes both the City column and the Week column.

The STRING scalar function is used to truncate the long-numeric values
returned for the Mov_Avg column. For details, refer to the SQL Reference
Guide.

As in the previous example, the blank line in the result set was produced by
using the RISQL Reporter command SET COLUMN column_name SKIP LINE.

n_expression The name of a column that contains numeric data or a
numeric expression.

n An integer that represents a smoothing factor.
3-14 SQL Self-Study Guide

Using the MOVINGSUM Function
Usage Notes

ORDER BY clauses are recommended for all queries that contain order-
dependent RISQL display functions.

Using the MOVINGSUM Function

Question
What was the seven-day moving sum of quantities of Demitasse Ms coffee
sold during March, 2000?

Example Query
select date, sum(quantity) as day_qty,

string(movingsum(sum(quantity), 7),7,2) as mov_sum
from store natural join sales natural join period

natural join product
where year = 2000 and month = 'MAR' and prod_name = 'Demitasse Ms'
group by date
order by date;

Result

Date Day_Qty Mov_Sum

2000-03-01 65 NULL

2000-03-02 19 NULL

2000-03-03 92 NULL

2000-03-04 91 NULL

2000-03-05 106 NULL

2000-03-06 92 NULL

2000-03-07 102 567.00

 (1 of 2)
Data Analysis 3-15

Result
2000-03-08 21 523.00

2000-03-09 74 578.00

2000-03-10 81 567.00

2000-03-11 77 553.00

2000-03-12 127 574.00

2000-03-13 169 651.00

2000-03-14 31 580.00

2000-03-15 56 615.00

2000-03-16 40 581.00

2000-03-17 84 584.00

2000-03-18 34 541.00

2000-03-19 128 542.00

2000-03-20 97 470.00

2000-03-21 50 489.00

2000-03-22 147 580.00

2000-03-23 104 644.00

2000-03-24 48 608.00

2000-03-25 93 667.00

2000-03-26 130 669.00

2000-03-27 95 667.00

2000-03-28 122 739.00

...

Date Day_Qty Mov_Sum

 (2 of 2)
3-16 SQL Self-Study Guide

Calculating Moving Sums: MOVINGSUM
Calculating Moving Sums: MOVINGSUM
A moving sum function, like a moving average, is used to smooth the effects
of fluctuations. For example, a seven-day moving sum is calculated by
summing seven consecutive days.

MOVINGSUM Function

To calculate a moving sum, place a MOVINGSUM function in the select list for
each numeric column to be summed. The function requires a column name
or numeric expression (n_expression) indicating the column to be summed
and an integer (n) representing the number of rows to sum (a smoothing
factor):

MOVINGSUM(n_expression, n)

About the Query

The example query calculates a seven-day moving sum of quantities of
Demitasse Ms coffee sold during March, 2000. The first six rows have NULL
entries because seven days must pass before the moving sum can be
calculated.

The STRING scalar function is used to truncate the long-numeric values
returned for the Mov_Sum column. For more information about this
function, refer to the SQL Reference Guide.

Usage Notes

If the MOVINGSUM function is applied to results that are not in chronological
order, the function will return incorrect results; therefore, an ORDER BY
clause is recommended. As in the previous example, the Date column must
be used in both the ORDER BY clause and the GROUP BY clause.
Data Analysis 3-17

Using the RANK Function
Using the RANK Function

Question
What were the March 1999 rankings of stores in the Western region, in terms
of total dollar sales?

Example Query
select store_name, district, sum(dollars) as total_sales,

rank(sum(dollars)) as sales_rank
from market natural join store

natural join sales
natural join period

where year = 1999
and month = 'MAR'
and region = 'West'

group by store_name, district;

Result

Store_Name District Total_Sales Sales_Rank

Cupertino Coffee Supply San Francisco 18801.50 1

San Jose Roasting Company San Francisco 18346.90 2

Beaches Brew Los Angeles 18282.05 3

Java Judy's Los Angeles 17826.25 4

Instant Coffee San Francisco 15650.50 5

Roasters, Los Gatos San Francisco 12694.50 6
3-18 SQL Self-Study Guide

Ranking Data: RANK
Ranking Data: RANK
You can rank any set of values with the RANK function, which assigns 1 to the
largest value in a group, 2 to the next largest, and so forth. Magnitude, not
order, determines the rank of a value.

RANK Function

To rank a set of values, specify:

RANK(expression)

In the select list, expression is any data type. If expression is NULL, RANK
returns NULL. For more information about numeric expressions, refer to the
SQL Reference Guide.

About the Query

The example query ranks stores in the Western region in terms of dollar sales
for March 1999. The daily totals from the Sales table that meet the search
conditions in the WHERE clause are summed, then ranked.

Usage Notes

The GROUP BY clause is required in this example. In a SELECT statement
without a GROUP BY clause, where an aggregation function is included in the
select list, all column references must be aggregation functions.

For nonnumeric data types, the ranking is based on the collation sequence
defined in the Red Brick Decision Server locale specification.

RANK is not an order-dependent display function; by default, queries that
contain a RANK function and no ORDER BY clause sort the result set by the
ranking values (highest to lowest).

To rank a set of values from bottom to top, reverse the sign of the ranked
column with the unary negation operator:

RANK(-expression)

For example:

rank(-dollars) as sales_rank
Data Analysis 3-19

Using the RANK, WHEN Function
Using the RANK, WHEN Function

Question
In the first quarter of 2000 at the Olympic Coffee Company, what were the top
10 days for sales of Breakfast Blend tea? What were the corresponding ranks
by quantity?

Example Query
select date, day, dollars as day_sales,

rank(dollars) as sales_rank,
quantity as day_qty,
rank(quantity) as qty_rank

from product natural join sales
natural join period
natural join store

where qtr = 'Q1_00'
and prod_name like 'Break%'
and store_name like 'Olympic%'

when sales_rank <= 10
order by date;

Result

Date Day Day_Sales Sales_Rank Day_Qty Qty_Rank

2000-01-21 FR 30.00 9 8 9

2000-02-01 TU 56.25 3 15 2

2000-02-08 TU 30.00 9 8 9

2000-02-22 TU 71.25 1 19 1

2000-02-23 WE 41.25 7 11 6

2000-03-03 FR 59.50 2 14 4

2000-03-11 SA 55.25 5 13 5

 (1 of 2)
3-20 SQL Self-Study Guide

Ranking the Top Ten: RANK, WHEN
Ranking the Top Ten: RANK, WHEN
You can rank any set of values with the RANK function and then specify that
only those of interest are displayed. For example, you can rank the sales of all
products but display only the top ten, the bottom ten, or any other combi-
nation that you can express in a search condition.

WHEN Clause
To restrict the rows returned in a result table after ranked values are calcu-
lated (or other display functions or set functions), include a WHEN clause in
the query:

SELECT select_list
FROM table_name
[WHERE search_condition]
[GROUP BY group_list]
[HAVING search_condition]
[WHEN condition]
[ORDER BY order_list]

[RESET BY reset_list]
[BREAK BY order_reference SUMMING select_reference_list]

[SUPPRESS BY column_list];

Compound conditions constructed with the AND, OR, and NOT logical
connectives are allowed in the WHEN clause. For more information about
conditions, refer to the SQL Reference Guide.

About the Query
The example query ranks daily sales of Breakfast Blend tea at a single store
in a single quarter but returns figures only for the top 10 days. The query also
returns the corresponding quantity rankings. The ORDER BY clause sorts the
result set in chronological order (by the values in the Date column).

When values to be ranked are equal, they are assigned the same ranking
value. For example, two rows receive a sales rank of 3 in this case.

2000-03-16 TH 56.25 3 15 2

2000-03-22 WE 38.25 8 9 8

2000-03-23 TH 42.50 6 10 7

Date Day Day_Sales Sales_Rank Day_Qty Qty_Rank

 (2 of 2)
Data Analysis 3-21

Using the NTILE Function
Using the NTILE Function

Question
Which products rank in the top 25 percent and bottom 25 percent based on
annual sales totals for 1999?

Example Query
select prod_name, sum(dollars) as total_sales,

ntile(total_sales, 4) as sales_rank
from sales natural join product

natural join period
where year = 1999
group by prod_name
when sales_rank in (1, 4);

Result

Prod_name Total_sales Sales_rank

Demitasse Ms 304727.00 1

Xalapa Lapa 263353.00 1

NA Lite 262162.00 1

Lotta Latte 251713.00 1

Cafe Au Lait 251086.50 1

Expresso XO 229201.25 1

Veracruzano 227769.50 1

La Antigua 223528.25 1

Aroma Roma 218574.75 1

Colombiano 218009.50 1

 (1 of 2)
3-22 SQL Self-Study Guide

Ranking Values in Groups: NTILE
Ranking Values in Groups: NTILE
You can rank each value in a group of numeric values as 1 (highest) through
any specified number (lowest) by using the NTILE function. This function
assigns the appropriate rank to a value depending on its magnitude relative
to other values in a group.

Syntax

To rank a set of values into 100 equal groups, include the NTILE function in
the select list and specify the numeric expression or column to be ranked,
followed by the number 100:

NTILE(expression, 100)

If expression is NULL, NTILE returns NULL. For more information about
numeric expressions, refer to the SQL Reference Guide.

Aroma Sounds CD 5937.00 4

Aroma Sounds Cassette 5323.00 4

French Press, 4-Cup 4570.50 4

Spice Jar 4073.00 4

French Press, 2-Cup 3042.75 4

Travel Mug 1581.75 4

Easter Sampler Basket 1500.00 4

Coffee Mug 1258.00 4

Christmas Sampler 1230.00 4

Prod_name Total_sales Sales_rank

 (2 of 2)
Data Analysis 3-23

Using the NTILE Function with a CASE Expression
About the Query

The example query ranks products as 1, 2, 3, or 4, based on annual sales totals
for 1999. The WHEN clause removes the middle 50 percent (2 and 3) from the
result set.

Usage Notes

In those cases where equal values span a boundary, they are distributed
between adjacent groups.

If the set of values is not divisible by the specified number, the NTILE function
puts leftover rows in the higher-level group.

Important: By using the NTILE function inside a CASE expression, you can redis-
tribute ranked values into unequal groups and replace the default NTILE numeric
values with more meaningful labels. For an example, refer to “Using the NTILE
Function with a CASE Expression.”

Using the NTILE Function with a CASE Expression

Question
What products fell into the top 20 percent, middle 60 percent, and bottom 20
percent of sales totals for the second week of 1998, at stores in the Western
region?
3-24 SQL Self-Study Guide

Example Query
Example Query
select prod_name, sum(quantity) as quantity,

sum(dollars) as sales,
case ntile(sum(dollars), 5)

when 1 then 'TOP_20'
when 2 then 'MID_60'
when 3 then 'MID_60'
when 4 then 'MID_60'
when 5 then 'LOW_20' end as grp

from market natural join store natural join sales
natural join period natural join product

where year = 1998 and week = 2 and region = 'West'
group by prod_name;

Result

Prod_Name Qty Sales Grp

Expresso XO 368 2887.00 TOP_20

Aroma Roma 246 1783.50 TOP_20

Colombiano 257 1757.75 TOP_20

Darjeeling Special 143 1655.00 TOP_20

Lotta Latte 198 1621.00 TOP_20

La Antigua 213 1589.25 TOP_20

Demitasse Ms 151 1503.75 MID_60

Xalapa Lapa 163 1395.50 MID_60

Ruby’s Allspice 183 1018.50 MID_60

Veracruzano 120 925.50 MID_60

NA Lite 100 900.00 MID_60

Cafe Au Lait 106 869.50 MID_60

Assam Gold Blend 104 636.50 MID_60

English Breakfast 137 561.50 MID_60

 (1 of 2)
Data Analysis 3-25

Ranking Values in Unequal Groups: CASE and NTILE
Ranking Values in Unequal Groups: CASE and NTILE
The NTILE function can combine powerfully with a CASE expression to rank
and redistribute a set of values. For example, NTILE might be used to rank
values into five equal groups; then a CASE expression could be used to redis-
tribute those values into unequal groups, representing a curve.

Aroma t-shirt 44 481.80 MID_60

Coffee Sampler 16 480.00 MID_60

Assam Grade A 114 380.00 MID_60

Darjeeling Number 1 69 378.25 MID_60

Irish Breakfast 81 345.75 MID_60

Breakfast Blend 82 322.00 MID_60

Gold Tips 91 320.75 MID_60

Earl Grey 80 305.00 MID_60

Special Tips 74 253.50 MID_60

Aroma Sheffield Steel Teapot 7 210.00 LOW_20

Espresso Machine Italiano 1 99.95 LOW_20

Aroma baseball cap 11 87.45 LOW_20

Spice Sampler 4 48.00 LOW_20

Travel Mug 1 10.95 LOW_20

Prod_Name Qty Sales Grp

 (2 of 2)
3-26 SQL Self-Study Guide

Ranking Values in Unequal Groups: CASE and NTILE
CASE Syntax

A CASE expression is a conditional scalar expression that can be used in the
select list to substitute a specified column value for another value:

CASE expression WHEN result THEN result1 ELSE result2
END AS col_alias

Typically, multiple WHEN...THEN conditions are used to find and replace
several different values.

Important: A CASE expression can take one of two forms: simple or searched. This
example uses the simple form. For more details, refer to the “SQL Reference Guide.”
For an example of the searched form, see “Using CASE Expressions” on page 4-6.

About the Query

The example query uses the NTILE function inside a CASE expression to
spread the tiled values (fifths) into three unequal groups: the top 20 percent
is represented in the final result set as TOP_20, the middle 60 percent as
MID_60, and the bottom 20 percent as LOW_20. When the following expression
evaluates to 1, that value is substituted with the character string TOP_20:

ntile(sum(dollars), 5)

expression Any valid expression.

result A value to which the expression is expected to evaluate.

result1 A value that substitutes for result.

result2 A default value that is used, if specified, when expression does
not evaluate to result.
Data Analysis 3-27

Using the TERTILE Function
When the expression evaluates to 2, 3, or 4, those values are replaced with
MID_60, and when it evaluates to 5, it is replaced with LOW_20.

Usage Notes

By adding a WHEN clause to the end of this query, you could eliminate a
specified portion of the result set. For example:

when grp = 'MID_60'

Using the TERTILE Function

Question
Which cities ranked high, middle, and low in the West and South in 1999, in
terms of unit sales of Earl Grey tea?

Example Query
select city, sum(quantity) as qty_1999,

tertile(sum(quantity)) as q_rk
from market natural join store

natural join sales
natural join product
natural join period

where year = 1999
and prod_name like 'Earl Grey%'
and region in ('West', 'South')

group by city;
3-28 SQL Self-Study Guide

Result
Result

Ranking Values as High, Middle, or Low: TERTILE
You can rank each value in a group of numeric values as High, Middle, or
Low with the TERTILE function. This function assigns the letter H, M, or L to
a value depending on its magnitude relative to other values in a group.

Syntax

To rank a group into thirds, include the TERTILE function in the select list and
specify the numeric expression or column to be ranked:

TERTILE(expression)

If expression is NULL, TERTILE returns NULL. For more information about
numeric expressions, refer to the SQL Reference Guide.

City Qty_1999 Q_RK

San Jose 1469 H

Los Angeles 911 H

Phoenix 814 H

Los Gatos 805 M

Miami 782 M

Cupertino 778 M

Houston 768 L

New Orleans 684 L

Atlanta 614 L

expression A column name or a numeric expression.
Data Analysis 3-29

Using the RATIOTOREPORT Function
About the Query

The example query ranks cities according to quantities of Earl Grey tea sold
during 1999. The result table is divided into city groups and the Quantity
column is summed for each city for the year.

Usage Notes

Values do not always fall nicely into three sets. When a set of values is not
divisible by three, the TERTILE function puts any leftover rows in the higher-
level group. In those cases where equal values span a boundary, they are
distributed between adjacent groups.

Even though the column referenced by the TERTILE function must be
numeric, the result of this function is always a character column.

For more information about the TERTILE function and data types, refer to the
SQL Reference Guide.

Using the RATIOTOREPORT Function

Question
What was the ratio of monthly sales to total sales of Xalapa Lapa coffee in San
Jose and Los Angeles stores during the third quarter of 1999?

Example Query
select city, month, sum(dollars) as total_sales,

ratiotoreport(sum(dollars))*100 as pct_of_sales
from store natural join sales

natural join product
natural join period

where prod_name like 'Xalapa%'
and qtr = 'Q3_99'
and city in ('San Jose', 'Los Angeles')

group by city, month;
3-30 SQL Self-Study Guide

Result
Result

Calculating Ratios as Percentages: RATIOTOREPORT*100
The RATIOTOREPORT function calculates the ratio of a numeric row value to
the total value of that column in the result set. For example, if a given column
lists sales figures for different products, each value in that column can be
expressed as a ratio of the total sales for all the products listed.

Syntax

To calculate a ratio of a column value to the sum of all the values in the
column, include the RATIOTOREPORT function in the select list and specify a
numeric expression or the name of a column that contains numeric values:

RATIOTOREPORT(expression)

If expression is NULL, RATIOTOREPORT returns NULL. For more information
about numeric expressions, refer to the SQL Reference Guide.

To calculate ratios as percentages, simply use the following notation after the
expression:

*100

City Month Total_Sales Pct_of_Sales

San Jose JUL 2499.50 26.99

Los Angeles JUL 1627.00 17.57

San Jose AUG 1004.00 10.84

Los Angeles AUG 995.00 10.74

San Jose SEP 1802.00 19.46

Los Angeles SEP 1334.00 14.40
Data Analysis 3-31

Using the DATEADD Function
About the Query

The example query displays the ratio of monthly sales of Xalapa Lapa coffee
in San Jose and Los Angeles stores during the third quarter of 1999 to the total
sales of that product in those stores during the same period.

The following expression returns the results of the RATIOTOREPORT function
as percentages:

(sum(dollars))*100

The values in the Pct_of_Sales column add up to exactly 100.

Usage Notes

The RATIOTOREPORT function can be reset for groups of values with the
RESET BY subclause of the ORDER BY clause. For information about RESET BY,
refer to page 3-11.

Using the DATEADD Function

Question
Calculate a date 90 days prior to and 90 days after a given date.

Example Query
select dateadd(day, -90, date) as due_date,

date as cur_date,
dateadd(day, 90, date) as past_due

from period
where year = 2000

and month = 'JAN';
3-32 SQL Self-Study Guide

Result
Result

Due_Date Cur_Date Past_Due

1999-10-03 2000-01-01 2000-03-31

1999-10-04 2000-01-02 2000-04-01

1999-10-05 2000-01-03 2000-04-02

1999-10-06 2000-01-04 2000-04-03

1999-10-07 2000-01-05 2000-04-04

1999-10-08 2000-01-06 2000-04-05

1999-10-09 2000-01-07 2000-04-06

1999-10-10 2000-01-08 2000-04-07

1999-10-11 2000-01-09 2000-04-08

1999-10-12 2000-01-10 2000-04-09

1999-10-13 2000-01-11 2000-04-10

1999-10-14 2000-01-12 2000-04-11

1999-10-15 2000-01-13 2000-04-12

1999-10-16 2000-01-14 2000-04-13

1999-10-17 2000-01-15 2000-04-14

1999-10-18 2000-01-16 2000-04-15

1999-10-19 2000-01-17 2000-04-16

1999-10-20 2000-01-18 2000-04-17

1999-10-21 2000-01-19 2000-04-18

1999-10-22 2000-01-20 2000-04-19

1999-10-23 2000-01-21 2000-04-20

1999-10-24 2000-01-22 2000-04-21

 (1 of 2)
Data Analysis 3-33

Incrementing or Decrementing Dates: DATEADD
Incrementing or Decrementing Dates: DATEADD
The DATEADD function returns a datetime value calculated from three
arguments:

■ Datepart that specifies an increment measure such as day, month, or
year

■ Positive or negative increment value

■ Value to be incremented or decremented (column name or datetime
expression)

1999-10-25 2000-01-23 2000-04-22

1999-10-26 2000-01-24 2000-04-23

1999-10-27 2000-01-25 2000-04-24

1999-10-28 2000-01-26 2000-04-25

1999-10-29 2000-01-27 2000-04-26

1999-10-30 2000-01-28 2000-04-27

1999-10-31 2000-01-29 2000-04-28

1999-11-01 2000-01-30 2000-04-29

1999-11-02 2000-01-31 2000-04-30

Function Returns

DATEADD(day, 90, '07-01-99') 1999-09-29

DATEADD(month, 3, '07-01-99') 1999-10-01

DATEADD(year, 1, '07-01-99’) 2000-07-01

Due_Date Cur_Date Past_Due

 (2 of 2)
3-34 SQL Self-Study Guide

Incrementing or Decrementing Dates: DATEADD
About the Query

The example query calculates a date 90 days before and 90 days after a given
date. The DATEADD function returns the value in the ANSI SQL-92 datetime
format.

You can also reformat the DATETIME value as a month name using the
DATENAME function. The following query uses the DATENAME function in
its WHERE clause:

select datename(month, dateadd(day, -90, date)) as prior,
datename(month, date) as cur,
datename(month, dateadd(day, 90, date)) as next

from period
where datename(yy, date) = '2000'

and month = 'JAN';

Because there are 29 days in February of 2000, January 1 plus 90 days is
March 31; therefore, the first row in the Next column is March. For more
information about DATETIME functions, refer to the SQL Reference Guide.

Prior Cur Next

October January March

October January April

October January April

October January April

October January April

October January April

...
Data Analysis 3-35

Using the DATEDIFF Function
Using the DATEDIFF Function

Question
How long did the storewide Christmas special promotion run in 1999?

Example Query
select promo_desc, year,

datediff(day, end_date, start_date)+1 as days_on_promo
from promotion p, period d
where p.start_date = d.date

and promo_desc like 'Christmas%'
and year = 1999;

Result

Promo_Desc Year Days_on_Promo

Christmas special 1999 31
3-36 SQL Self-Study Guide

Calculating Elapsed Days: DATEDIFF
Calculating Elapsed Days: DATEDIFF
The DATEDIFF function returns a datetime value calculated from three
arguments:

■ Datepart that specifies the increment measure such as day, month, or
year

■ Two datetime expressions, which must be DATE, TIME, or
TIMESTAMP data types

About the Query

The example query calculates the number of days elapsed between the start
and finish of a storewide promotion. To return the result, the following
DATEDIFF function operates on the datetime values in the Promotion table:

datediff(day, end_date, start_date)+1

The +1 is required because the difference between the End_Date and
Start_Date values is equal to 30 days, whereas the duration of the
promotion includes both the Start_Date and the End_Date (31 days).

Usage Notes

This query is also an example of a join between two tables that do not have a
primary-key to foreign-key relationship; the joining columns simply have
comparable datetime data types:

where p.start_date = d.date

Function Returns

DATEDIFF(day, '07-01-00','01-01-00') 182

DATEDIFF(month, '07-01-00','01-01-00') 6

DATEDIFF(quarter, '07-01-00','01-01-00') 2
Data Analysis 3-37

Using the EXTRACT Function
Any two tables, including system tables, can be joined over comparable
columns.

The purpose of the join in this case is to return the Year value from the Period
table; alternatively, this value could be extracted from the datetime columns
in the Promotion table.

Using the EXTRACT Function

Question
What were the day and month names and numbers for the first six weeks of
1998 as extracted from the datetime values in the Period table?

Example Query
select datename(weekday, date) as day_name,

extract(weekday from date) as day_num,
extract(day from date) as day,
extract(dayofyear from date) as day_yr,
datename(month, date) as mo_name,
extract(month from date) as mo_num

from period
where extract(year from date) = 1998

and extract(week from date) < 7;

Result

Day_Name Day_Num Day Day_Yr Mo_Name Mo_Num

Thursday 5 1 1 January 1

Friday 6 2 2 January 1

Saturday 7 3 3 January 1

Sunday 1 4 4 January 1

Monday 2 5 5 January 1

 (1 of 2)
3-38 SQL Self-Study Guide

Result
Tuesday 3 6 6 January 1

Wednesday 4 7 7 January 1

Thursday 5 8 8 January 1

Friday 6 9 9 January 1

Saturday 7 10 10 January 1

Sunday 1 11 11 January 1

Monday 2 12 12 January 1

Tuesday 3 13 13 January 1

Wednesday 4 14 14 January 1

Thursday 5 15 15 January 1

Friday 6 16 16 January 1

Saturday 7 17 17 January 1

Sunday 1 18 18 January 1

Monday 2 19 19 January 1

Tuesday 3 20 20 January 1

Wednesday 4 21 21 January 1

Thursday 5 22 22 January 1

Friday 6 23 23 January 1

Saturday 7 24 24 January 1

Sunday 1 25 25 January 1

Monday 2 26 26 January 1

Tuesday 3 27 27 January 1

Day_Name Day_Num Day Day_Yr Mo_Name Mo_Num

 (2 of 2)
Data Analysis 3-39

Displaying Dateparts as Integers: EXTRACT
Displaying Dateparts as Integers: EXTRACT
The EXTRACT function returns an integer value representing a part of a
DATETIME value. The function requires two arguments:

■ Datepart, which specifies the increment measure such as day, month,
or year

■ Datetime expression (column name or DATETIME expression)

About the Query

The example query uses the DATENAME and EXTRACT scalar functions to
return day and month names and day and month numbers for the first six
weeks of 1998.

Except for the first week of the year, weeks typically begin on Sunday or
Monday, depending on the territory specified in the Red Brick Decision
Server locale. For information about locale specifications, refer to the Admin-
istrator’s Guide and the Installation and Configuration Guide.

Function Returns

extract(weekday from date_col) Weekday as an integer value from the set
(1, 2, …, 7)

extract(day from date_col) Day of month as an integer from the set
(1, 2, …, 31)
3-40 SQL Self-Study Guide

Summary
Summary

RISQL Display Functions

In all of the preceding functions except RANK, the expression argument must
be a numeric expression or a numeric column name. The expression
argument for the RANK function can be of any data type.

CASE Expressions
CASE expressions in the select list are useful for substituting column values
with other specified values, such as meaningful character strings to replace
numeric values returned by display functions.

For another use of the CASE expression, see “Using CASE Expressions” on
page 4-6.

Function Result

CUME(expression) Cumulative sum

MOVINGAVG(expression, n) Average of the previous n rows

MOVINGSUM(expression, n) Sum of the previous n rows

NTILE(expression, n) n-level rank of values

RANK(expression) Numeric rank of values

TERTILE(expression) Three-level (high, medium, and low) rank
of values

RATIOTOREPORT(expression) Ratio of portion to total
Data Analysis 3-41

DATETIME Functions
DATETIME Functions

This chapter described how to:

■ Use RISQL display functions to perform data analysis, such as calcu-
lating ranks, moving averages, and cumulative sums

■ Redistribute ranked values into unequal groups and give
meaningful labels to those values with an NTILE calculation inside a
CASE expression

■ Use DATETIME scalar functions to calculate and extract date infor-
mation from DATETIME columns

 Function Action

DATEADD Adds interval to datetime value.

DATEDIFF Subtracts the difference between two datetime values.

DATENAME Extracts datepart component from datetime value as character
string.

EXTRACT Extracts datepart from datetime value as integer.
3-42 SQL Self-Study Guide

4
Chapter
Comparison Queries
In This Chapter . 4-3

Comparing Data with SQL 4-4
A Simple Comparison Query 4-6

Using CASE Expressions 4-6
A Solution for Comparing Data: CASE Expressions 4-8

Using Subqueries in the FROM Clause 4-9
A More Flexible Solution: Subqueries in the FROM Clause 4-11

Performing Calculations and Comparisons 4-12
Calculations with FROM Clause Subqueries 4-13

Using Subqueries in the Select List 4-14
Comparisons with Select-List Subqueries 4-16

Using Correlated Subqueries 4-17
Correlated Subqueries in the Select List 4-19

Using Cross-References 4-20
Cross-References with Expressions 4-21

Calculating Percentages of Quarter and Year 4-22
Calculations with Select-List Subqueries 4-23

Using Subqueries in the WHERE Clause 4-24
Comparisons with WHERE Clause Subqueries 4-25

Using the ALL Comparison Predicate 4-26
Comparison Predicates in Subqueries 4-27

Using the EXISTS Predicate 4-28
EXISTS Predicate 4-29

4-2 SQL
Using the SOME or ANY Predicate 4-31
SOME or ANY Predicate. 4-32

Summary . 4-33
 Self-Study Guide

In This Chapter
This chapter focuses on queries that compare data. The chapter begins by
illustrating the problem that confronts the query writer: how to use SQL to
return a spreadsheet or “cross-tab” report rather than a standard, vertically
ordered result set that is hard to read. The problem is solved by using either
CASE expressions or subqueries.

The CASE solution is presented first, as a simple and concise way of
comparing like groups of values. Then several examples of FROM clause and
select-list subqueries are presented. These subqueries have the added value
of being able to both compare data from different groups and include calcu-
lations against the compared values, such as share percentages over given
time periods.

This chapter describes subqueries stated as conditions in the WHERE clause,
which are useful for simpler comparison queries. The last sections also
describe the ALL, EXISTS, and SOME or ANY predicates, which can be used to
express conditions on subquery results.
Comparison Queries 4-3

Comparing Data with SQL
Comparing Data with SQL

Question
How did sales of packaged coffee compare at stores in the western
region in 1998?

Query
select store_name, prod_name, sum(dollars) as sales

from market natural join store
natural join sales
natural join period
natural join product
natural join class

where region like 'West%'
and year = 1998
and class_type = 'Pkg_coffee'

group by store_name, prod_name
order by store_name, prod_name;

Result

Store_Name Prod_Name Sales

Beaches Brew Aroma Roma 3483.50

Beaches Brew Cafe Au Lait 3129.50

Beaches Brew Colombiano 2298.25

Beaches Brew Demitasse Ms 4529.25

Beaches Brew Expresso XO 4132.75

Beaches Brew La Antigua 4219.75

Beaches Brew Lotta Latte 3468.00

Beaches Brew NA Lite 4771.00

 (1 of 2)
4-4 SQL Self-Study Guide

Result
Beaches Brew Veracruzano 4443.00

Beaches Brew Xalapa Lapa 4304.00

Cupertino Coffee Supply Aroma Roma 4491.00

Cupertino Coffee Supply Cafe Au Lait 4375.50

Cupertino Coffee Supply Colombiano 2653.50

Cupertino Coffee Supply Demitasse Ms 3936.50

Cupertino Coffee Supply Expresso XO 4689.25

Cupertino Coffee Supply La Antigua 2932.00

Cupertino Coffee Supply Lotta Latte 5146.00

Cupertino Coffee Supply NA Lite 4026.00

Cupertino Coffee Supply Veracruzano 3285.00

Cupertino Coffee Supply Xalapa Lapa 5784.00

Instant Coffee Aroma Roma 3485.25

Instant Coffee Cafe Au Lait 3599.50

Instant Coffee Colombiano 3321.75

Instant Coffee Demitasse Ms 5422.25

Instant Coffee Expresso XO 2851.00

Instant Coffee La Antigua 2937.25

Instant Coffee Lotta Latte 4783.50

Instant Coffee NA Lite 3740.00

Instant Coffee Veracruzano 4712.00

Instant Coffee Xalapa Lapa 3698.00

...

Store_Name Prod_Name Sales

 (2 of 2)
Comparison Queries 4-5

A Simple Comparison Query
A Simple Comparison Query
You can list the sales of a group of products at specific stores using a simple
SELECT statement, but the format of the result table makes the values difficult
to compare. For example, the preceding partial result set shows that La
Antigua coffee was sold at several stores in the western region, but these
figures are hard to isolate.

This kind of data is much easier to compare when it is formatted like a
spreadsheet. There are two ways to produce a spreadsheet, or “cross-tab,”
report: by using CASE expressions or subqueries. The following examples in
this chapter illustrate both methods of writing comparison queries.

About the Query

The example query returns 1998 sales figures for packaged coffee products
sold at each store in the western region, but the format of the output data
makes it difficult to compare the figures product by product, store by store.

Using CASE Expressions

Question
How did sales of packaged coffee compare at stores in the western region
in 1998?

Example Query
select prod_name,

sum(case when store_name = 'Beaches Brew'
then dollars else 0 end) as Beaches,

sum(case when store_name = 'Cupertino Coffee Supply'
then dollars else 0 end) as Cupertino,

sum(case when store_name = 'Roasters, Los Gatos'
then dollars else 0 end) as RoastLG,

sum(case when store_name = 'San Jose Roasting Company'
then dollars else 0 end) as SJRoastCo,

sum(case when store_name = 'Java Judy''s'
then dollars else 0 end) as JavaJudy,
4-6 SQL Self-Study Guide

Result
sum(case when store_name = 'Instant Coffee'
then dollars else 0 end) as Instant

from market natural join store
natural join sales
natural join period
natural join product
natural join class

where region like 'West%'
and year = 1998
and class_type = 'Pkg_coffee'

group by prod_name
order by prod_name;

Result

Prod_Name Beaches Cupertino RoastLG SJRoastCo JavaJudy Instant

Aroma Roma 3483.50 4491.00 4602.00 4399.25 3748.25 3485.25

Cafe Au Lait 3129.50 4375.50 4199.00 3620.00 4864.50 3599.50

Colombiano 2298.25 2653.50 4205.00 3530.75 3509.00 3321.75

Demitasse Ms 4529.25 3936.50 4347.75 5699.00 6395.25 5422.25

Expresso XO 4132.75 4689.25 4234.50 3811.00 5012.25 2851.00

La Antigua 4219.75 2932.00 3447.50 4323.00 2410.25 2937.25

Lotta Latte 3468.00 5146.00 4469.50 5103.50 4003.00 4783.50

NA Lite 4771.00 4026.00 3250.00 2736.00 4791.00 3740.00

Veracruzano 4443.00 3285.00 4467.00 3856.00 4510.00 4712.00

Xalapa Lapa 4304.00 5784.00 3906.00 3645.00 3182.00 3698.00
Comparison Queries 4-7

A Solution for Comparing Data: CASE Expressions
A Solution for Comparing Data: CASE Expressions
An efficient and concise way to display compared values in a readable
spreadsheet format is to use CASE expressions in the select list. Each CASE
operation evaluates a specified expression and supplies a different value
depending on whether a certain condition is met.

CASE Syntax

In general, you construct a CASE comparison query by specifying the
constraints for the entire domain over which results are to be produced in the
WHERE clause of the main, or outer, query. Then you break the result into
subsets with a CASE expression in the select list:

CASE WHEN search_condition THEN result1 ELSE result2
END AS col_alias

Important: A CASE expression can take one of two forms: simple or searched. This
example uses the searched form. For more details, refer to the “SQL Reference
Guide.” For an example of the simple form, see “Using the NTILE Function with a
CASE Expression” on page 3-24.

About the Query

This query poses the same business question as the previous query in this
chapter. In this case, however, the CASE expression is used to produce six
different columns in the result set that contain aggregate dollar values, one
column for each store.

search_condition A logical condition that evaluates to true or false.

result1 A value used when search_condition is true.

result2 A default value when search_condition is false.
4-8 SQL Self-Study Guide

Using Subqueries in the FROM Clause
Usage Notes

In the WHEN condition for the store named Java Judy’s, the apostrophe must
be expressed as two single quotes:

when store_name = 'Java Judy''s'

Otherwise, the apostrophe will be interpreted as the closing quote for the
character string, and the query will return an “incomplete string” error.

Using Subqueries in the FROM Clause

Question
How did product sales in San Jose during January 1998 compare with annual
product sales in the same city during the same year?

Example Query
select product, jan_98_sales, total_98_sales
from

(select p1.prod_name, sum(dollars)
from product p1 natural join sales s1

natural join period d1 natural join store r1
where d1.year = 1998 and month = 'JAN'

and r1.city like 'San J%'
group by p1.prod_name) as sales1(product, jan_98_sales)

natural join

(select p2.prod_name, sum(dollars) as total_98_sales
from product p2 natural join sales s2

natural join period d2 natural join store r2
where d2.year = 1998 and r2.city like 'San J%'
group by p2.prod_name) as sales2(product, total_98_sales)

order by product;
Comparison Queries 4-9

Result
Result

Product Jan_98_Sales Total_98_Sales

Aroma Roma 1653.00 21697.50

Aroma Sheffield Steel Teapot 120.00 1122.00

Aroma Sounds Cassette 58.50 866.00

Aroma baseball cap 7.95 2960.15

Aroma t-shirt 470.85 4470.50

Assam Gold Blend 652.00 11375.00

Assam Grade A 352.00 5429.00

Breakfast Blend 608.25 6394.75

Cafe Au Lait 1936.50 24050.50

Colombiano 2148.00 22528.50

Darjeeling Number 1 867.50 8590.00

Darjeeling Special 1355.00 17787.50

Demitasse Ms 2163.00 35523.50

Earl Grey 540.50 6608.50

English Breakfast 393.00 5365.50

Espresso Machine Italiano 899.55 4397.80

Expresso XO 2935.50 27362.00

French Press, 2-Cup 104.65 1196.00

French Press, 4-Cup 19.95 1109.20

Gold Tips 440.00 5381.50

Irish Breakfast 703.25 7455.50

...
4-10 SQL Self-Study Guide

A More Flexible Solution: Subqueries in the FROM Clause
A More Flexible Solution: Subqueries in the FROM Clause
A subquery is any query expression enclosed in parentheses that occurs
inside another query. A subquery is sometimes referred to as an inner query
that operates within an outer query, or as the child query of a parent query.

About the Query

A value is often compared with a sum of a set of values. The example query
compares product sales in San Jose in January 1998 with product sales in San
Jose throughout 1998. This kind of query requires mixed aggregations; therefore,
it cannot be written with CASE expressions, which must operate on values
within a single group or scope. Instead, subqueries in the FROM clause are
used to make the comparison.

Important: Any query that can be expressed as a subquery in the FROM clause can
also be expressed as a subquery in the select list, as shown later in this chapter.
However, subqueries in the FROM clause generally run faster and are conceptually
easier to write.

Usage Notes

The example query relies on the flexibility of the query expression in standard
SQL to join the results of two subqueries. For detailed information about
query expressions, refer to the SQL Reference Guide.

Tables derived from the evaluation of subqueries can be joined with other
table references. To this end, a subquery in the FROM clause must have a
correlation name; however, the list of derived columns is optional. For
example, the subqueries in this example evaluate to the following tables:

sales1(product, jan_98_sales)
sales2(product, total_98_sales)

The natural join of these tables (over the Product column) produces an
unnamed derived table with three columns, the source of the three select-list
items in the main query:

product, jan_98_sales, total_98_sales

For more examples of table joins, refer to Chapter 5, “Joins and Unions.”
Comparison Queries 4-11

Performing Calculations and Comparisons
Performing Calculations and Comparisons

Question
What percentage of annual product sales in San Jose did the January 1998
sales figures in that city represent? What were the top ten products in terms
of those percentages?

Example Query
select product, jan_98_sales, total_98_sales,

dec(100 * jan_98_sales/total_98_sales,7,2) as pct_of_98,
rank(pct_of_98) as rank_pct

from
(select p1.prod_name, sum(dollars)
from product p1 natural join sales s1

natural join period d1 natural join store r1
where d1.year = 1998 and month = 'JAN'

and r1.city like 'San J%'
group by p1.prod_name) as sales1(product, jan_98_sales)

natural join

(select p2.prod_name, sum(dollars)
from product p2 natural join sales s2

natural join period d2 natural join store r2
where d2.year = 1998

and r2.city like 'San J%'
group by p2.prod_name) as sales2(product, total_98_sales)

when rank_pct <= 10
order by product;

Result

Product Jan_98_Sales Total_98_Sales Pct_of_98 Rank_Pct

Aroma Sheffield Steel
Teapot

 120.00 1122.00 10.69 4

Aroma t-shirt 470.85 4470.50 10.53 5

 (1 of 2)
4-12 SQL Self-Study Guide

Calculations with FROM Clause Subqueries
Calculations with FROM Clause Subqueries
The result set of a comparison query can be used as the source data for
various calculations. For example, a monthly total for a product can be
expressed as a share of annual sales with a simple percentage calculation:

100 * monthly_sales / annual_sales

Simple and complex market, product, and time interval shares or
percentages can be calculated with subqueries in the FROM clause.

About the Query

Based on the previous example, this query calculates the monthly sales
figures for each product in San Jose as a share or percentage of annual sales
for that product in the same city. Using the RANK display function (intro-
duced in Chapter 3), the query also ranks the percentage values and discards
all but the top ten products from the result set.

The figures in the Pct_of_98 column do not add up to 100 because these
figures represent percentages of one month to a year for individual product
sales, not percentages of monthly sales to all annual sales.

Breakfast Blend 608.25 6394.75 9.51 9

Colombiano 2148.00 22528.50 9.53 8

Darjeeling Number 1 867.50 8590.00 10.09 7

Espresso Machine Italiano 899.55 4397.80 20.45 1

Expresso XO 2935.50 27362.00 10.72 3

Irish Breakfast 703.25 7455.50 9.43 10

La Antigua 2643.25 22244.50 11.88 2

Lotta Latte 3195.00 31200.00 10.24 6

Product Jan_98_Sales Total_98_Sales Pct_of_98 Rank_Pct

 (2 of 2)
Comparison Queries 4-13

Using Subqueries in the Select List
Usage Notes

The select list of the main query consists entirely of derived column names,
column aliases, and/or expressions that include those names and aliases. For
example, the following select-list item uses columns named in the table that
derives from the natural join of the subqueries as the operands of the multi-
plication (*) and division (/) calculations:

dec(100 * jan_98_sales/total_98_sales,7,2) as pct_of_98

In turn, the final select-list item uses the column alias from the previous
expression as the argument of the RANK function:

rank(pct_of_98) as rank_pct

For more examples of RISQL display functions and the use of the WHEN
clause, refer to Chapter 3, “Data Analysis.”

Queries that calculate various percentages and performance metrics might
require numerous lines of repetitive instructions. For information on how to
abbreviate and generalize long SQL statements with RISQL macros, refer to
Chapter 6, “Macros, Views, and Temporary Tables.”

Using Subqueries in the Select List

Question
During which days of December 1999 were Lotta Latte sales figures at the San
Jose Roasting Company lower than the average daily sales figure for the
same product at the same store during December 1998?

Display the daily average for 1998 as a separate column.
4-14 SQL Self-Study Guide

Example Query
Example Query
select prod_name, store_name, date, dollars as sales_99,

(select dec(avg(dollars),7,2)
from store natural join sales

natural join product
natural join period

where year = 1998
and month = 'DEC'
and store_name = 'San Jose Roasting Company'
and prod_name like 'Lotta%') as avg_98

from store natural join sales
natural join product
natural join period

where prod_name like 'Lotta%'
and store_name = 'San Jose Roasting Company'
and year = 1999
and month = 'DEC'
and dollars <

(select avg(dollars)
from store natural join sales

natural join product
natural join period

where year = 1998
and month = 'DEC'
and store_name = 'San Jose Roasting Company'
and prod_name like 'Lotta%');

Result

Prod_Name Store_Name Date Sales_99 Avg_98

Lotta Latte San Jose Roasting Company 1999-12-09 153.00 154.72

Lotta Latte San Jose Roasting Company 1999-12-28 144.50 154.72
Comparison Queries 4-15

Comparisons with Select-List Subqueries
Comparisons with Select-List Subqueries
A subquery can occur in the select list of a main query only if it returns one
row or no rows. This kind of subquery, a scalar subquery, is useful for spread-
sheet-style comparisons in which a series of values returned by the main
query is compared to a single value returned by the subquery.

About the Query

This example subquery returns the daily Lotta Latte sales figures at the San
Jose Roasting Company in 1999 in cases where those figures were lower than
the average daily sales figure at the same store during 1998. The Avg_98
column contains a single, repeated value that represents the 1998 average;
this same value would appear in that column regardless of the number of
rows in the result set.

The same subquery occurs twice in the main query:

■ Once as a column definition in the select list

■ Once as an operand of the less-than operator (<) in a WHERE clause
condition

This query is processed in the following order:

1. The second subquery, which defines the search condition in the
WHERE clause of the main query, is executed.

2. The value derived from the second subquery is inserted into the
WHERE clause of the main query.

3. The select-list subquery is executed.

4. The main query is executed.

Usage Notes

The DEC scalar function is used on the Avg_98 column of the result set to
truncate the average sales figures:

dec(avg(dollars),7,2)
4-16 SQL Self-Study Guide

Using Correlated Subqueries
Using Correlated Subqueries

Question
How did individual product sales in San Jose during January 1998 compare
with annual sales in the same city during the same year?

Example Query
select p1.prod_name, sum(s1.dollars) as jan_98_sales,

(select sum(s2.dollars)
from store r2 natural join sales s2

natural join product p2 natural join period d2
where p1.prod_name = p2.prod_name

and d1.year = d2.year
and r1.city = r2.city) as total_98_sales

from store r1 natural join sales s1
natural join product p1
natural join period d1

where year = 1998 and month = 'JAN'
and city like 'San J%'

group by p1.prod_name, d1.year, r1.city
order by p1.prod_name;

Result

Prod_Name Jan_98_Sales Total_98_Sales

Aroma Roma 1653.00 21697.50

Aroma Sheffield Steel Teapot 120.00 1122.00

Aroma Sounds Cassette 58.50 866.00

Aroma baseball cap 7.95 2960.15

Aroma t-shirt 470.85 4470.50

Assam Gold Blend 652.00 11375.00

 (1 of 2)
Comparison Queries 4-17

Result
Assam Grade A 352.00 5429.00

Breakfast Blend 608.25 6394.75

Cafe Au Lait 1936.50 24050.50

Colombiano 2148.00 22528.50

Darjeeling Number 1 867.50 8590.00

Darjeeling Special 1355.00 17787.50

Demitasse Ms 2163.00 35523.50

Earl Grey 540.50 6608.50

English Breakfast 393.00 5365.50

Espresso Machine Italiano 899.55 4397.80

Expresso XO 2935.50 27362.00

French Press, 2-Cup 104.65 1196.00

French Press, 4-Cup 19.95 1109.20

Gold Tips 440.00 5381.50

Irish Breakfast 703.25 7455.50

La Antigua 2643.25 22244.50

Lotta Latte 3195.00 31200.00

NA Lite 1319.00 27457.00

...

Prod_Name Jan_98_Sales Total_98_Sales

 (2 of 2)
4-18 SQL Self-Study Guide

Correlated Subqueries in the Select List
Correlated Subqueries in the Select List
Although select-list subqueries must return a single value or no value, they
can be executed more than once in reference to results returned by the main
query. In this way, such correlated subqueries in the select list can be used to the
same effect as subqueries in the FROM clause.

A correlated subquery is closely related to the main query through cross-
references to specific values in rows retrieved by the main query. For
example, a correlated subquery might reference values in the Month column
of the main query; therefore, the subquery returns a new value each time the
value of the Month column changes. These cross-references are expressed
with table correlation names assigned in the FROM clause.

About the Query

The example query presents the same business question as the query on
page 4-9, but places the subquery in the select list instead of in the FROM
clause. The query compares the sales of products in San Jose during January
1998 with annual sales of products in San Jose in the same year.

To enable the subquery to return a series of values instead of one fixed value,
three cross-references correlate the subquery with the main query:

p1.prod_name = p2.prod_name
d1.year = d2.year
r1.city = r2.city

The correlation names p2, d2, and r2, defined in the FROM clause of the
subquery, remove ambiguity. Each correlation condition references a specific
product, year, and city in the row currently being processed by the main
query. These cross-references are sometimes called outer references.

Usage Notes

When an aggregate function occurs in the select list of the main query, a
GROUP BY clause is required. Column names referenced in a correlation
condition of a subquery must appear in the GROUP BY clause of the main
query; therefore, the following columns must be listed in the GROUP BY
clause, as well as the Prod_Name column:

d1.year, r1.city
Comparison Queries 4-19

Using Cross-References
As database identifiers, correlation names must begin with a letter and
contain no more than 128 characters. A combination of letters, digits, and
underscores can follow the initial letter. (A keyword cannot serve as a
database identifier.)

Using Cross-References

Question
What were the monthly sales of Lotta Latte in San Jose during the first three
months of 1999 and 1998?

Example Query
select q.prod_name, e.month, sum(dollars) as sales_99,

(select sum(dollars)
from store t natural join sales s

natural join product p
natural join period d

where d.month = e.month
and d.year = e.year-1
and p.prod_name = q.prod_name
and t.city = u.city) as sales_98

from store u natural join product q
natural join period e natural join sales l

where qtr = 'Q1_99'
and prod_name like 'Lotta Latte%'
and city like 'San J%'

group by q.prod_name, e.month, e.year, u.city;

Result

Prod_Name Month Sales_99 Sales_98

Lotta Latte JAN 1611.00 3195.00

Lotta Latte FEB 3162.50 4239.50

Lotta Latte MAR 2561.50 2980.50
4-20 SQL Self-Study Guide

Cross-References with Expressions
Cross-References with Expressions
Cross-references in subqueries are not limited to qualified column names;
they can also be expressions. For example, the following expressions are
valid cross-references:

period.year-1 (previous year)
period.quarter-1 (previous quarter)

These kinds of generalized cross-references simplify the design of applica-
tions written for client tools.

About the Query

This query returns the monthly Lotta Latte sales in San Jose during the first
three months of both 1999 and 1998. The key to the correlation is that the
intended result contains data from the same months but for different years.

The FROM clause of the main query assigns correlation names to all of the
joined tables:

from store u natural join product q
natural join period e natural join sales l

The subquery then correlates its execution with the execution of the main
query based on the following conditions in the WHERE clause:

d.month = e.month
d.year = e.year-1
p.prod_name = q.prod_name
t.city = u.city

As the main query retrieves rows, the values of each column in the parent
query can change, and the correlation conditions transmit this change to the
subquery. The cross-reference to the previous year as year-1 generalizes the
subquery by eliminating a constant value (1998).

To change the query to report on other year periods, only the year constraint
in the main query need be changed.

Usage Notes

Whenever possible, generalize correlated subqueries and minimize user
interaction by using expressions as cross-references. For more information
about generalizing queries, refer to Chapter 6, “Macros, Views, and
Temporary Tables.”
Comparison Queries 4-21

Calculating Percentages of Quarter and Year
Calculating Percentages of Quarter and Year

Question
What were the monthly sales totals in the first quarter of 1998 for products
sold in one-pound bags in San Jose? What were the corresponding share of
quarter and share of year percentages for each monthly total?

Example Query
select pj.prod_name, dj.month, sum(dollars) as mon_sales_98,

dec(100 * sum(dollars)/
(select sum(si.dollars)
from store ri natural join sales si

natural join product pi
natural join period di

where di.qtr = dj.qtr
and di.year = dj.year
and pi.prod_name = pj.prod_name
and pi.pkg_type = pj.pkg_type
and ri.city = rj.city), 7, 2) as pct_qtr1,

dec(100 * sum(dollars)/
(select sum(si.dollars)
from store ri natural join sales si

natural join product pi
natural join period di

where di.year = dj.year
and pi.prod_name = pj.prod_name
and pi.pkg_type = pj.pkg_type
and ri.city = rj.city), 7, 2) as pct_yr

from store rj natural join sales sj
natural join product pj
natural join period dj

where rj.city = 'San Jose'
and dj.year = 1998
and dj.qtr = 'Q1_98'
and pkg_type = 'One-pound bag'

group by pj.prod_name, dj.month, dj.qtr, dj.year, pj.pkg_type,
rj.city

order by pj.prod_name, pct_qtr1 desc;
4-22 SQL Self-Study Guide

Result
Result

Calculations with Select-List Subqueries
Monthly percentages for quarters, years, or other time periods can be calcu-
lated with a select-list subquery. The main query retrieves the monthly sales
figures and two subqueries retrieve the quarterly and yearly sales figures.
The monthly percentages require simple calculations: ratios of month-to-
quarter sales and month-to-year sales.

About the Query

This example query calculates month-to-quarter and month-to-year sales
percentages for selected coffee products sold in San Jose during the first
quarter of 1998. After calculating the percentages, the query orders the result
table by product and quarterly percentage in descending order.

Usage Notes

Like the previous example, this select-list subquery requires explicit cross-
references to correlate the execution of the subquery with the retrieval of new
rows by the main query.

Prod_Name Month Mon_Sales_98 Pct_Qtr1 Pct_Yr

Aroma Roma FEB 688.75 39.91 8.73

Aroma Roma JAN 594.50 34.45 7.54

Aroma Roma MAR 442.25 25.63 5.60

Cafe Au Lait MAR 742.00 40.61 10.27

Cafe Au Lait JAN 600.50 32.86 8.31

Cafe Au Lait FEB 484.50 26.51 6.71

...
Comparison Queries 4-23

Using Subqueries in the WHERE Clause
In most cases, this kind of comparison query runs faster and is easier to
conceptualize as a series of subqueries expressed in the FROM clause.
Nonetheless, if the correlated method is your preferred way of expressing the
query and the query performs well, there is no need to rewrite it. Both
approaches offer the same functions and produce the same results.

Using Subqueries in the WHERE Clause

Question
During which days in June 1999 were Lotta Latte sales figures at stores in the
Chicago district lower than the average daily sales figures for the same
product in the same district during June 1998?

Example Query
select prod_name, district, date, dollars as sales_99
from market natural join store

natural join sales
natural join product
natural join period

where prod_name like 'Lotta%'
and district like 'Chic%'
and year = 1999
and month = 'JUN'
and dollars <

(select avg(dollars)
from market natural join store

natural join sales
natural join product
natural join period

where prod_name like 'Lotta%'
and district like 'Chic%'
and year = 1998
and month = 'JUN');
4-24 SQL Self-Study Guide

Result
Result

Comparisons with WHERE Clause Subqueries
So far, this chapter has focused on the equivalent functionality but different
syntax involved in placing subqueries in the select list or the FROM clause.
Subqueries can also be used as search conditions or predicates in the WHERE
clause as a means of pushing complex constraints through to the early stages
of the main query’s execution. For example, although you cannot use a set
function as part of a simple WHERE clause search condition, you can use a set
function in the WHERE clause if it is embedded inside a subquery.

About the Query

This query returns the Lotta Latte sales figures at stores in the Chicago
district during 1999 for days on which the sales were lower than the average
daily Lotta Latte sales figure for the same city during 1998.

The subquery in this example is scalar—it produces one value. After the
subquery has calculated the average dollar figure per day in Chicago in 1998,
that single average value is used as a constraint on all the rows returned by
the main query. Only those figures for 1999 that were lower than the 1998
average are displayed in the result set; the average figure itself cannot be
displayed unless the subquery is moved into the select list or the FROM
clause.

Prod_Name District Date Sales_99

Lotta Latte Chicago 1999-06-08 76.50

Lotta Latte Chicago 1999-06-11 59.50

Lotta Latte Chicago 1999-06-17 42.50

Lotta Latte Chicago 1999-06-18 76.50

Lotta Latte Chicago 1999-06-30 110.50
Comparison Queries 4-25

Using the ALL Comparison Predicate
Usage Notes

The logical order of query processing dictates that WHERE clause constraints
are applied by the server immediately after the tables in the FROM clause
were joined and prior to any calculations with set functions (such as AVG and
SUM), RISQL display functions, and so on. Therefore, you cannot use one of
those functions in a simple search condition in the WHERE clause.

Using the ALL Comparison Predicate

Question
What product registered the highest daily sales total in Hartford,
Connecticut, in January 2000?

Example Query
select prod_name, date, dollars
from store natural join sales

natural join product
natural join period

where year = 2000
and city = 'Hartford'
and month = 'JAN'
and dollars >= all

(select dollars
from store natural join sales

natural join product
natural join period

where year = 2000
and city = 'Hartford'
and month = 'JAN');
4-26 SQL Self-Study Guide

Result
Result

Comparison Predicates in Subqueries
The predicates ALL, ANY, SOME, and EXISTS are useful for expressing condi-
tions on groups of values retrieved by a subquery. A comparison predicate
states a logical relationship between two values: The comparison is true,
false, or unknown with respect to a given row. (The ANY and SOME predi-
cates are synonyms.)

For more information about these predicates, refer to the SQL Reference Guide.

About the Query

The example query returns the name of the product that recorded the highest
daily sales total in Hartford in January 2000 and the specific date when that
total was recorded. The query could be rewritten to return the lowest total by
replacing the greater-than or equal-to (>=) operator with a less-than or equal-
to (<=) operator.

Prod_Name Date Dollars

NA Lite 2000-01-24 414.00

Predicate Evaluates to “true” when When no value is returned

ALL The comparison is true for all values
returned by the subquery.

Evaluates to true.

ANY, SOME The comparison is true for at least one of
the values returned by the subquery.

Evaluates to false.

EXISTS The subquery produces at least one row. Evaluates to false.
Comparison Queries 4-27

Using the EXISTS Predicate
Usage Notes

An alternative (and more concise) way to write this query is to use the RANK
function in the WHEN clause:

select prod_name, date, dollars
from sales natural join period

natural join product
natural join store

where year = 2000
and month = 'JAN'
and city = 'Hartford'

when rank(dollars) = 1;

However, RANK queries can yield multiple rows that tie for the rank of 1,
while a subquery in the WHERE clause must return one row or no rows.

Using the EXISTS Predicate

Question
Which suppliers closed at least one order in March 2000?

Example Query
select distinct name as supplier_name
from supplier
where exists

(select * from orders
where supplier.supkey = orders.supkey
and extract(year from close_date) = 2000
and extract(month from close_date) = 03);
4-28 SQL Self-Study Guide

Result
Result

EXISTS Predicate
The EXISTS predicate operates on a subquery and evaluates to true or false. If
it evaluates to true, the main query produces a result set. If it evaluates to
false, the main query returns no rows.

About the Query

The example query returns the names of each supplier that closed one or
more orders with the Aroma Coffee Company in March 2000.

The subquery contains three conditions that test whether any such suppliers
exist. The first condition is a join of the Supplier and Orders tables over the
Supkey column. The second and third conditions are expressed with the
EXTRACT function, which checks for the appropriate dateparts in the
Close_Date column of the Orders table. (For a detailed example of this
function, refer to “Using the EXTRACT Function” on page 3-38.)

Supplier Name

Aroma East Mfg.

Aroma West Mfg.

Crashing By Design

Espresso Express

Leaves of London

Tea Makers, Inc.

Western Emporium
Comparison Queries 4-29

EXISTS Predicate
Usage Notes

You could ask the same business question by joining the Supplier, Orders,
and Period tables:

select distinct name as supplier_name
from supplier s, orders o, period p
where s.supkey = o.supkey

and o.close_date = p.date
and year = 2000
and month = 'MAR';

This alternative query must join the Orders and Period tables over their
Close_Date and Date columns, not their Perkey columns. This is because the
Perkey column indicates the date when the orders were entered, which
might be in an earlier month. For example, an order might be entered in the
last week of February but received and closed in the first week of March.

This join of the Orders and Period tables is a good example of a join over
columns that have no primary-key to foreign-key relationship. The join is
possible because the Close_Date and Date columns have comparable data
types.

The opposite of the EXISTS predicate is NOT EXISTS:

...
where not exists (select...)

For more information about this predicate, refer to the SQL Reference Guide.
4-30 SQL Self-Study Guide

Using the SOME or ANY Predicate
Using the SOME or ANY Predicate

Question
Which suppliers have at some point provided orders priced at more than
$10,000? What were the actual prices of orders closed in March 2000 by those
suppliers?

Example Query
select name as supplier_name, price
from supplier natural join orders

where extract(year from close_date) = 2000
and extract(month from close_date) = 03
and supplier_name = some

(select name from supplier
natural join orders
where price > 10000)

order by supplier_name;

Result

Supplier_Name Price

Aroma West Mfg. 4425.00

Espresso Express 30250.00

Espresso Express 25100.00

Espresso Express 26400.00

Espresso Express 22700.00

Western Emporium 10234.50
Comparison Queries 4-31

SOME or ANY Predicate
SOME or ANY Predicate
The SOME and ANY comparison predicates evaluate to true when at least one
of the values returned by the subquery meets the conditions specified in it.
You can use these predicates interchangeably because they are synonyms.

SOME and ANY are useful for retaining rows in the result set when they meet
all the conditions specified in the inner query but not all the conditions in the
outer query. For example, the outer query might request a list of suppliers
that shipped orders in a specific month, regardless of their price, while the
inner query might request a list of suppliers that have shipped orders that
cost more than a specific amount in any month.

About the Query

The example query uses the SOME predicate to return a list of suppliers and
order prices:

■ The subquery returns a list of suppliers that have supplied at least
one order that cost more than $10,000.

■ The main query takes that list of suppliers and matches it with
records of orders closed in March 2000, with no constraint on the
price of each order.

The last row in the result set shows that an order was supplied by Aroma
West Mfg. in March 2000 that cost $4,425.00. The presence of this row
indicates that at some other point in time, Aroma West Mfg. supplied at least
one order that cost more than $10,000.

Usage Notes

The EXTRACT function is used in the same way in this query as in the
example of the EXISTS predicate on page 4-28.

For more information about these predicates, refer to the SQL Reference Guide.
4-32 SQL Self-Study Guide

Summary
Summary
This chapter described how to write queries that compare data and display
the results in a readable format. Various approaches are illustrated:

■ CASE expressions

■ FROM clause subqueries

■ Select-list subqueries, including correlated subqueries

■ WHERE clause subqueries

The chapter ended with examples of the ALL, ANY, SOME, and EXISTS
comparison predicates, which can be used as conditions on subquery results.

Some of the more complex examples showed how to include calculations in
comparison queries, such as percentages that represent share of quarter or
share of year.

Important: In general, query performance is faster when comparison queries use
CASE expressions rather than subqueries. If subqueries are necessary, however, the
preferred method is to use the FROM clause rather than the select list.
Comparison Queries 4-33

5
Chapter
Joins and Unions
In This Chapter . 5-3

Join of Two Tables 5-3
Inner Joins . 5-5

Different Ways to Join Tables 5-6
Joins in the FROM Clause 5-7

System Table Join 5-8
Joining System Tables 5-9

Self-Joins . 5-10
Joining a Table to Itself 5-12

Outer Join of Two Tables 5-12
Outer Joins . 5-14

Fact-to-Fact Join . 5-15
Left Outer Join 5-17

Fact-to-Fact Join . 5-18
Full Outer Join with ORDER BY, BREAK BY. 5-19

OR Versus UNION 5-21
Combining Result Sets: UNION 5-22

INTERSECT Operation 5-24
Finding Common Rows: INTERSECT 5-25

INTERSECT Operation Inside Subquery 5-26
INTERSECT of Fact Table Data 5-27

EXCEPT Operation 5-28
EXCEPT: Finding the Exceptions in Two Result Sets 5-29

5-2 SQL
Summary . 5-30
Joining Tables 5-30
UNION, INTERSECT, and EXCEPT Operators 5-30
 Self-Study Guide

In This Chapter
This chapter describes two ways to combine data from different tables:

■ By joining the tables

■ By using the UNION, EXCEPT, and INTERSECT operators

The first part of this chapter presents several examples of inner and outer
joins.

The second part illustrates how to combine data from different tables by
using UNION, EXCEPT, and INTERSECT operators, which take the interme-
diate result set from one query expression and combine it with the result set
from another query expression.

Join of Two Tables

State Table Region Table

City State City Area

Jacksonville FL Jacksonville South

Miami FL Miami South

Nashville TN New Orleans South
Joins and Unions 5-3

Example Query
Example Query
select * from state, region;

Cartesian Product (join predicate not specified)

Example Query
select * from state, region
where state.city = region.city;

Subset of Cartesian Product (join predicate specified)

City State City Area

Jacksonville FL Jacksonville South

Jacksonville FL Miami South

Jacksonville FL New Orleans South

Miami FL Jacksonville South

Miami FL Miami South

Miami FL New Orleans South

Nashville TN Jacksonville South

Nashville TN Miami South

Nashville TN New Orleans South

State:City State:State Region:City Region:Area

Jacksonville FL Jacksonville South

Miami FL Miami South
5-4 SQL Self-Study Guide

Inner Joins
Inner Joins
Most queries join information from different tables. Any two tables can be
joined over columns with comparable data types; joins are not dependent on
primary-key to foreign-key relationships.

Cartesian Product

When two or more tables are referenced in the FROM clause of a query, the
database server joins the tables. If neither the FROM clause nor the WHERE
clause specifies a predicate for the join, the server computes a Cartesian
product that contains m * n rows, where m is the number of rows in the first
table and n is the number of rows in the second table. This product is the set
of all possible combinations formed by concatenating a row from the first
table with a row from the second table.

Important: If the OPTION CROSS_JOIN parameter in the rbw.config file is set to
OFF (the default), cross-join queries are not executed.

Subset of the Cartesian Product

If tables are explicitly joined over columns with comparable datatypes, the
server computes a subset of the Cartesian product. This subset contains only
those rows where the values in the joining columns match. For the duration
of the query, the subset functions as a derived table that can be joined with
other tables or the results of other query expressions.

About the Query

The State and Region tables both contain City columns, which are specified
as the joining columns in the WHERE clause. Consequently, only those rows
of the Cartesian product that have matching City keys are displayed in the
result. In the example query, the result table contains only two rows whereas
the full Cartesian product of these two tables contains nine rows.

The joining columns could alternatively be specified in the FROM clause, as
discussed on page 5-7.

Important: The tables used in the following three queries are not part of the Aroma
database; Aroma tables are used in the examples later in this chapter.
Joins and Unions 5-5

Different Ways to Join Tables
Different Ways to Join Tables

Question
How long did the Christmas special promotion run in 1998 and 1999? What
were the total sales for products sold on that promotion in each year, and
what was the average sales total per day in each year?

Example Query 1
select promo_desc, year, sum(dollars) as sales,

datediff(day, end_date, start_date)+1 as days_on_promo,
string(sales/days_on_promo, 7, 2) as per_day

from period natural join sales
natural join promotion

where promo_desc like 'Christmas%'
and year in (1998, 1999)

group by promo_desc, year, days_on_promo;

Example Query 2
select promo_desc, year, sum(dollars) as sales,

datediff(day, end_date, start_date)+1 as days_on_promo,
string(sales/days_on_promo, 7, 2) as per_day

from period join sales on period.perkey = sales.perkey
join promotion on promotion.promokey = sales.promokey

where promo_desc like 'Christmas%'
and year in (1998, 1999)

group by promo_desc, year, days_on_promo;

Example Query 3
select promo_desc, year, sum(dollars) as sales,

datediff(day, end_date, start_date)+1 as days_on_promo,
string(sales/days_on_promo, 7, 2) as per_day

from period join sales using(perkey)
join promotion using(promokey)

where promo_desc like 'Christmas%'
and year in (1998, 1999)

group by promo_desc, year, days_on_promo;
5-6 SQL Self-Study Guide

Three Queries, Same Result
Three Queries, Same Result

Joins in the FROM Clause
You can explicitly join tables in the FROM clause in three ways:

■ Natural join

■ Join over named columns (USING syntax)

■ Join over predicate (ON syntax)

About the Query

This query joins the Promotion, Period, and Sales tables over columns with
identical names; therefore, it can be abbreviated with the NATURAL JOIN
syntax, as shown in Query 1. Queries 2 and 3 show alternative methods of
specifying inner equijoins in the FROM clause. The result set is the same in all
three cases; however, the ON and USING join specifications retain both joining
columns in their intermediate result sets, whereas the NATURAL JOIN speci-
fication combines each pair of joining columns into one column.

Note the use of scalar functions in this query:

■ The DATEDIFF function is used to calculate the duration of the
Christmas promotion. This function is discussed in detail on
page 3-36.

■ The STRING function is used to scale the Per_Day column values
down to a precision of two decimal places; without this function, the
following expression would return long-numeric values:

sales/promo_days

Promo_Desc Year Sales Days_on_Promo Per_Day

Christmas special 1999 1230.00 31 39.67

Christmas special 1998 690.00 31 22.25
Joins and Unions 5-7

System Table Join
Usage Notes

Natural joins operate on all pairs of columns that have identical names and
should be used with caution; otherwise, tables might be inadvertently joined
over columns that happen to have the same name but were not intended to
participate in the join.

In the retail schema of the Aroma database, all the primary-key to foreign-
key relationships are based on columns with the same name, so natural joins
are effective for most queries that involve the Sales table and its dimensions.

For an example of a join over nonprimary-key and foreign-key columns, refer
to “Calculating Elapsed Days: DATEDIFF” on page 3-37. For a complete
discussion of join syntax, refer to the SQL Reference Guide.

System Table Join

Question
What are the names of the segments and physical storage units (PSUs) used
to store the Aroma Sales table?

Example Query
select segname as storage, location as psu_location,

tname as table_name
from rbw_storage join rbw_segments on

rbw_storage.segname = rbw_segments.name
where table_name = 'SALES'
order by psu_location;
5-8 SQL Self-Study Guide

Result
Result

Joining System Tables
Database administrators need to know the relationships between different
database objects, such as tables and indexes or tables and segments. To facil-
itate access to this kind of information, Red Brick Decision Server system
tables can be joined in the same way as all other database tables.

About the Query

This query joins two system tables to identify the names of both default and
user-defined segments and their associated PSUs for the Sales table in the
Aroma database.

Usage Notes

The following WHERE clause condition must use uppercase for SALES:

table_name = 'SALES'

Otherwise, no matching rows are found.

For detailed information about system tables, table segmentation, and so on,
refer to the Administrator’s Guide.

Storage PSU_Location Table_Name

DEFAULT_SEGMENT_23 dfltseg23_psu1 SALES

DAILY_DATA1 sales_psu1 SALES

DAILY_DATA1 sales_psu2 SALES

DAILY_DATA2 sales_psu3 SALES

DAILY_DATA2 sales_psu4 SALES
Joins and Unions 5-9

Self-Joins
Self-Joins

Question
Which products in the Product table have the same names but different types
of packaging?

Example Query
select a.prod_name as products,

a.pkg_type
from product a, product b
where a.prod_name = b.prod_name

and a.pkg_type <> b.pkg_type
order by products, a.pkg_type;

Result

Product Pkg_Type

Aroma Roma No pkg

Aroma Roma One-pound bag

Assam Gold Blend No pkg

Assam Gold Blend Qtr-pound bag

Assam Grade A No pkg

Assam Grade A Qtr-pound bag

Breakfast Blend No pkg

Breakfast Blend Qtr-pound bag

Cafe Au Lait No pkg

Cafe Au Lait One-pound bag

Colombiano No pkg

 (1 of 2)
5-10 SQL Self-Study Guide

Result
Colombiano One-pound bag

Darjeeling Number 1 No pkg

Darjeeling Number 1 Qtr-pound bag

Darjeeling Special No pkg

Darjeeling Special Qtr-pound bag

Demitasse Ms No pkg

Demitasse Ms One-pound bag

Earl Grey No pkg

Earl Grey Qtr-pound bag

English Breakfast No pkg

English Breakfast Qtr-pound bag

Expresso XO No pkg

Expresso XO One-pound bag

Gold Tips No pkg

Gold Tips Qtr-pound bag

Irish Breakfast No pkg

Irish Breakfast Qtr-pound bag

...

Product Pkg_Type

 (2 of 2)
Joins and Unions 5-11

Joining a Table to Itself
Joining a Table to Itself
The tables being joined in a query do not need to be distinct; you can join any
table to itself as long as you give each table reference a different name. Self-
joins are useful for discovering relationships between different columns of
data in the same table.

About the Query

This query joins the Product table to itself over the Prod_Name column,
using the aliases a and b to distinguish the table references:

from product a, product b

The self-join compares Product table a to Product table b to find rows where
the product names match but the package types differ:

where a.prod_name = b.prod_name
and a.pkg_type <> b.pkg_type

The result set consists of a list of each pair of identically named products and
their individual package types.

Outer Join of Two Tables

Example Query (left outer join)
select * from state left outer join region

on state.city = region.city;

Result

State:City State:State Region:City Region:Area

Jacksonville FL Jacksonville South

Miami FL Miami South

Nashville TN NULL NULL
5-12 SQL Self-Study Guide

Example Query (right outer join)
Example Query (right outer join)
select * from state right outer join region

on state.city = region.city;

Result

Example Query (full outer join)
select * from state full outer join region

on state.city = region.city;

Result

Important: These examples use the tables introduced on page 5-3.

State:City State:State Region:City Region:Area

Jacksonville FL Jacksonville South

Miami FL Miami South

NULL NULL New Orleans South

State:City State:State Region:City Region:Area

Jacksonville FL Jacksonville South

Miami FL Miami South

Nashville TN NULL NULL

NULL NULL New Orleans South
Joins and Unions 5-13

Outer Joins
Outer Joins
In most cases, tables are joined according to search conditions that find only
the rows with matching values; this type of join is known as an inner equijoin.
In some cases, however, decision-support analysis requires outer joins, which
retrieve both matching and non-matching rows, or non-equijoins, which
express, for example, a greater-than or less-than relationship.

An outer join operation returns all the rows returned by an inner join plus all
the rows from one table that do not match any row from the other table. An
outer join can be left, right, or full, depending on whether rows from the left,
right, or both tables are retained. The first table listed in the FROM clause is
referred to as the left table and the second as the right table. For all three types
of outer join, NULLs are used to represent empty columns in rows that do not
match.

Syntax

As shown in the preceding examples, an outer join between two tables can be
specified in the FROM clause with the OUTER JOIN keywords followed by the
ON subclause:

FROM table_1 LEFT|RIGHT|FULL OUTER JOIN table_2
ON table_1.column = table_2.column

For details about other ways to specify outer join predicates in the FROM
clause, refer to the SQL Reference Guide.

About the Queries

■ The result of the left outer join contains every row from the State
table and all matching rows in the Region table. Rows found only in
the Region table are not displayed.

■ The result of the right outer join contains every row from the Region
table and all matching rows from the State table. Rows found only in
the State table are not displayed.

■ The result of the full outer join contains those rows that are unique to
each table, as well as those rows that are common to both tables.
5-14 SQL Self-Study Guide

Fact-to-Fact Join
Fact-to-Fact Join

Question
What were the prices paid per line item, per full order, or per line item and
full order for order numbers 3619 through 3626?

Example Query
select coalesce(o.order_no, l.order_no) as order_num,

order_type, o.price as full_cost,
l.price as line_cost

from orders o left outer join line_items l
on o.order_no = l.order_no
join period on o.perkey = period.perkey

where o.order_no between 3619 and 3626
order by order_num;

Result

Order_Num Order_Type Full_Cost Line_Cost

3619 Tea 4325.25 725.25

3619 Tea 4325.25 400.00

3619 Tea 4325.25 400.00

3619 Tea 4325.25 400.00

3619 Tea 4325.25 400.00

3619 Tea 4325.25 400.00

3619 Tea 4325.25 400.00

3619 Tea 4325.25 400.00

3619 Tea 4325.25 400.00

3619 Tea 4325.25 400.00

 (1 of 2)
Joins and Unions 5-15

Result
3620 Tea 4325.25 NULL

3621 Spice 10234.50 10234.50

3622 Spice 10234.50 10234.50

3623 Hardware 4425.00 400.00

3623 Hardware 4425.00 400.00

3623 Hardware 4425.00 500.00

3623 Hardware 4425.00 450.00

3623 Hardware 4425.00 500.00

3623 Hardware 4425.00 275.00

3623 Hardware 4425.00 650.00

3623 Hardware 4425.00 1250.00

3624 Hardware 4425.00 400.00

3624 Hardware 4425.00 500.00

3624 Hardware 4425.00 450.00

3624 Hardware 4425.00 400.00

3624 Hardware 4425.00 500.00

3624 Hardware 4425.00 275.00

3624 Hardware 4425.00 650.00

3624 Hardware 4425.00 1250.00

3625 Clothing 3995.95 2500.00

3625 Clothing 3995.95 1495.95

3626 Hardware 16500.00 NULL

Order_Num Order_Type Full_Cost Line_Cost

 (2 of 2)
5-16 SQL Self-Study Guide

Left Outer Join
Left Outer Join
Outer joins are often used to join fact tables as a means of comparing related
sets of measurements that cannot be queried from a single table.

About the Query

The Orders and Line_Items tables store related facts; however, the line-item
detail information for an order might be loaded into the database sometime
after the order information is loaded. If an analyst wants to see both order
and line-item prices, if available, or just the order prices when no line-item
price is available, an outer join is required.

The query returns the prices of both full orders and line items; if the line item
prices are unavailable, the full order price is still displayed and the
Line_Price and Line_Orders columns contain NULLs. This effect is achieved
by using a left outer join, with the Orders table being treated as the left table.

The COALESCE function is used to derive one column heading in the report
from two columns in the select list:

coalesce(o.order_no, l.order_no) as order_num

Because either column might be NULL, the COALESCE function will produce
the value of the non-NULL column. Without this function, the result set
would consist of duplicate columns for the order numbers.

Usage Notes

For details on how to express outer join conditions with standard SQL, refer
to the SQL Reference Guide.

The example query uses the tables in the Aroma purchasing schema, which
is described in detail in Appendix A, “The Complete Aroma Database.”
Joins and Unions 5-17

Fact-to-Fact Join
Fact-to-Fact Join

Question
In weeks 12 and 13 of 2000, how did revenues from sales compare with
expenditures on orders?

Example Query
select date, extract(week from date) as wk_no, prices, sales
from

((select d1.date, sum(price)
from orders natural join period d1
where d1.year = 2000 and d1.week in (12, 13)
group by d1.date) as t1

full outer join
(select d2.date, sum(dollars)
from sales natural join period d2
where d2.year = 2000 and d2.week in (12, 13)
group by d2.date) as t2

on t1.date = t2.date) as t3(order_date, prices, date, sales)
order by wk_no, date
break by wk_no summing prices, sales;

Result

Date Wk_No Prices Sales

2000-03-12 12 NULL 9991.65

2000-03-13 12 31800.00 10162.75

2000-03-14 12 NULL 9514.55

2000-03-15 12 NULL 9074.10

2000-03-16 12 NULL 11009.55

2000-03-17 12 NULL 9177.90

2000-03-18 12 NULL 7412.65

 (1 of 2)
5-18 SQL Self-Study Guide

Full Outer Join with ORDER BY, BREAK BY
Full Outer Join with ORDER BY, BREAK BY
Full outer joins return results that include rows from the left and right tables,
whether or not they contain matching values in the joining columns. In the
result set, the columns for which no match was found contain NULLs.

About the Query

The Sales and Line_Items tables store different sets of facts but share two
dimension tables, Product and Period. To create a report of orders and sales
over a given period, you can inner-join each fact table to the Period table,
then outer-join the results of the inner joins. One way to do this is to use
subqueries in the FROM clause.

The first subquery evaluates to a table named t1, the second to a table named
t2. Table t3 is the result of the full outer join of t1 and t2. Table t3 consists of
four named columns:

t3(order_date, prices, date, sales)

NULL 12 31800.00 66343.15

2000-03-19 13 NULL 8620.25

2000-03-20 13 27025.25 8417.95

2000-03-21 13 NULL 8230.05

2000-03-22 13 NULL 9870.20

2000-03-23 13 NULL 8757.50

2000-03-24 13 NULL 8394.25

2000-03-25 13 3995.95 10046.90

NULL 13 31021.20 62337.10

NULL NULL 62821.20 128680.25

Date Wk_No Prices Sales

 (2 of 2)
Joins and Unions 5-19

Full Outer Join with ORDER BY, BREAK BY
The select list of the main query references three of these columns, Prices,
Date, and Sales. A fourth column in the select list, Wk_No, is extracted from
the Date column with the EXTRACT scalar function:

extract(week from date) as wk_no

The ORDER BY clause and its BREAK BY subclause sort the data by week and
date, then display subtotals for each week for both the Prices column and the
Sales column. The last row of the result set displays grand totals.

Usage Notes

Table aliases are required in this query because the same table name cannot
be repeated in the FROM clause. For example, the Period table is referenced
as d1 in one join specification and as d2 in another.

Any column referenced in a BREAK BY clause must also be listed in the
ORDER BY clause. For more information about these clauses, refer to the SQL
Reference Guide.

The preceding example is similar to some of the FROM clause subqueries in
Chapter 4, “Comparison Queries.”

For more examples of queries that use datetime scalar functions, refer to
Chapter 3, “Data Analysis.”
5-20 SQL Self-Study Guide

OR Versus UNION
OR Versus UNION

Question
What were the total sales in week 52 of 1999 for all Aroma stores classified as
“Medium”? What were the totals during the same period for “Large” stores?

Example Query with OR Condition
select store_name as store, store_type as size, state,

sum(dollars) as sales
from period t join sales s on t.perkey = s.perkey

join store r on r.storekey = s.storekey
where (store_type = 'Medium' or store_type = 'Large')

and year = 1999
and week = 52

group by store, size, state
order by size, store;

Example UNION Query
select store_name as store, store_type as size, state,

sum(dollars) as sales
from period t join sales s on t.perkey = s.perkey

join store r on r.storekey = s.storekey
where store_type = 'Medium'

and year = 1999
and week = 52

group by store, size, state
union
select store_name as store, store_type as size, state,

sum(dollars)
from period t join sales s on t.perkey = s.perkey

join store r on r.storekey = s.storekey
where store_type = 'Large'

and year = 1999
and week = 52

group by store, size, state
order by size, store;
Joins and Unions 5-21

Two Queries, Same Result
Two Queries, Same Result

Combining Result Sets: UNION
You can use the UNION, EXCEPT, and INTERSECT operators to combine the
output of two or more query expressions into a single set of rows and
columns. The server evaluates each query expression independently, then
combines the output, displaying column headings from the first expression.
The server eliminates duplicate result rows unless you specify the ALL
keyword.

UNION, INTERSECT, EXCEPT

query_expression UNION | INTERSECT | EXCEPT [ALL]
query_expression
[ORDER BY order_list]
[SUPPRESS BY suppress_list];

Store Size State Sales

Beaches Brew Large CA 2908.80

Miami Espresso Large FL 4582.00

Olympic Coffee Company Large GA 3732.50

San Jose Roasting Company Large CA 3933.15

Beans of Boston Medium MA 3772.75

Cupertino Coffee Supply Medium CA 2893.00

Java Judy’s Medium AZ 3011.25

Moulin Rouge Roasting Medium LA 3972.00

Texas Teahouse Medium TX 3382.75

query_expression Any join or nonjoin query expression, as defined in the
SQL Reference Guide.
5-22 SQL Self-Study Guide

Combining Result Sets: UNION
If SUPPRESS BY and ORDER BY clauses are used, they must reference columns
from the select list of the first query expression.

About the Query

The same business question can be answered by either specifying an OR
condition in a single SELECT statement or combining two query expressions
with a UNION operator.

Using the OR connective is easier in this simple example, but in some cases a
UNION operation improves query performance. For example, suppose your
query requires that you access data in two large fact tables. The outer join
operation required by a single query might require more processing than
using a UNION operation to combine the results of two query expressions.

The ORDER BY clause must reference the column aliases, not the column
names, defined in the select list of the first query expression:

order by size, store

Usage Notes

UNION, INTERSECT, and EXCEPT queries must be symmetrical; that is, the
number of columns and their order must be the same in the select lists on
both sides of the UNION operator. Corresponding columns must have the
same, or comparable, datatypes, although they may have different names.

Multiple UNION, INTERSECT, and EXCEPT operators can be used in a single
statement; operations are evaluated from left to right unless you specify
precedence with parentheses.
Joins and Unions 5-23

INTERSECT Operation
INTERSECT Operation

Question
Which bulk tea products sold on promotion in San Jose in 2000 were also sold
on promotion in New Orleans in 1999? What promotions were run on those
products?

Example Query
select prod_name as tea_name, promo_desc
from sales natural join class

natural join product
natural join store
natural join period
natural join promotion

where city = 'San Jose'
and year = 2000
and class_desc like 'Bulk tea%'

intersect
select prod_name, promo_desc
from sales natural join class

natural join product
natural join store
natural join period
natural join promotion

where city = 'New Orleans'
and year = 1999
and class_desc like 'Bulk tea%'
and promo_desc not like 'No promo%'

order by promo_desc;
5-24 SQL Self-Study Guide

Result
Result

Finding Common Rows: INTERSECT
You can use the INTERSECT operator to return only those rows that are
common to the results returned by two or more query expressions.

About the Query

The example query finds the intersection of two query expressions, one that
returns a list of bulk tea products sold on promotion in San Jose in 2000 and
one that returns a similar list for New Orleans in 1999. The INTERSECT
operator eliminates all rows that are not found in both preliminary result sets.

Usage Notes

The results of UNION, EXCEPT, and INTERSECT operations derive column
headings only from the first query expression in the query; therefore, the
column alias Tea_Name need only be specified in the first query expression.

Tea_Name Promo_Desc

Irish Breakfast Aroma catalog coupon

Special Tips Aroma catalog coupon

Darjeeling Special Store display

Darjeeling Special Temporary price reduction

Gold Tips Temporary price reduction
Joins and Unions 5-25

INTERSECT Operation Inside Subquery
INTERSECT Operation Inside Subquery

Question
Of the products that were ordered in March 2000, which ones were also sold
at the Coffee Connection store during that month?

What did orders of these products cost in that month?

What was the total revenue (sum of sales dollars) for those products in the
entire Northern region during that month?

Example Query
select product, cost_of_orders, revenue_north
from (select prod_name

from product natural join sales natural join period
natural join store

where year = 2000 and month = 'MAR'
and store_name = 'Coffee Connection'

intersect
select prod_name
from product natural join line_items natural join period
where year = 2000 and month = 'MAR') as p(product)

natural join
(select prod_name, sum(price)
from product natural join line_items natural join period
where year = 2000 and month = 'MAR'
group by prod_name) as c(product, cost_of_orders)

natural join
(select prod_name, sum(dollars)
from product natural join sales natural join period

natural join store natural join market
where year = 2000 and month = 'MAR' and region = 'North'
group by prod_name) as r(product, revenue_north)

order by product;
5-26 SQL Self-Study Guide

Result
Result

INTERSECT of Fact Table Data
The UNION, INTERSECT, and EXCEPT operators are useful for querying tables
that contain similar or comparable sets of facts.

About the Query

This query contains three subqueries in the FROM clause. The function of the
INTERSECT operator inside the first subquery is to produce a list of products
that were ordered in March 2000 as well as sold at the Coffee Connection
store in the same month. This is done by placing the INTERSECT operator
between query expressions that join two different fact tables, Sales and
Line_Items.

The second subquery produces the sum of the order prices for March 2000 for
the list of products produced by the first subquery.

The third subquery produces the sum of the sales dollars for the same list of
products during the same month, but for the whole Northern region.

Product Cost_of_Orders Revenue_North

Aroma Roma 7300.00 3190.00

Cafe Au Lait 7300.00 3975.50

Colombiano 7300.00 3907.50

Demitasse Ms 8500.00 6081.25

Expresso XO 7300.00 4218.50

La Antigua 7300.00 3510.50

Lotta Latte 7300.00 4273.00

NA Lite 7300.00 6480.00

Veracruzano 7300.00 4055.00

Xalapa Lapa 7300.00 6896.50
Joins and Unions 5-27

EXCEPT Operation
Usage Notes

The preceding query is similar to the examples of FROM clause subqueries
in Chapter 4, “Comparison Queries.” The select list of the main query
consists entirely of columns named in the tables derived from the subqueries.

EXCEPT Operation

Question
What were the total 1999 revenues for stores in California cities that are not
defined as HQ cities in the Market table?

Example Query
select city, store_name, sum(dollars) as sales_99
from (select city

from store
where state = 'CA'
except
select hq_city
from market
where hq_state = 'CA')
as except_cities(city)

natural join store
natural join sales
natural join period

where year = 1999
group by city, store_name
order by sales_99 desc;

Result

City Store_Name Sales_99

Cupertino Cupertino Coffee Supply 196439.75

Los Gatos Roasters, Los Gatos 175048.75
5-28 SQL Self-Study Guide

EXCEPT: Finding the Exceptions in Two Result Sets
EXCEPT: Finding the Exceptions in Two Result Sets
The EXCEPT operator finds the exceptions in (or the difference between) the
results of two query expressions. For example, an EXCEPT operation could
compare lists of products sold at two stores, eliminate all the products sold at
both, and retain only those products sold exclusively at the store specified in
the first query expression.

About the Query

In the example query, the function of the EXCEPT operator is to select those
California cities that are defined in the City column of the Store table but not
in the Hq_City column of the Market table.

This query uses a subquery in the FROM clause to produce a derived table of
cities that can be joined with the Sales, Store, and Period tables. The table
derived from the subquery is given a correlation name and one column
name:

except_cities(city)

This derived table can be joined with the Store table using a natural join over
the City column.

Usage Notes

To test the outcome of the EXCEPT operation, you could run the subquery in
this example as a query in its own right:

select city
from store
where state = 'CA'
except
select hq_city
from market
where hq_state = 'CA';

CITY
Cupertino
Los Gatos

For more examples of subqueries, refer to Chapter 4, “Comparison Queries.”
Joins and Unions 5-29

Summary
Summary
This chapter described:

■ How to join tables

■ How to combine the results of two independent query expressions
by using the UNION, INTERSECT, and EXCEPT operators

Joining Tables
When the FROM clause of a query lists two or more tables, the server joins the
tables. The server can perform both inner and outer joins between any two
tables on any two columns with comparable data types. You can use either
the FROM clause or the WHERE clause to write join specifications.

UNION, INTERSECT, and EXCEPT Operators
query_expression
UNION | INTERSECT | EXCEPT [ALL]
query_expression
[ORDER BY order_list]
[SUPPRESS BY suppress_list];
5-30 SQL Self-Study Guide

6
Chapter
Macros, Views, and Temporary
Tables
In This Chapter . 6-3

Basic Macros . 6-4
Using Basic Macros 6-5

Embedded Macros 6-7
Using Embedded Macros 6-9

Macros with Parameters 6-10
Using Macros with Parameters 6-12

Multiparameter Macros 6-13
Macros with Multiple Parameters 6-14

Comparisons . 6-15
Using Comparison Macros 6-17

Share Comparisons 6-18
Using Share Comparison Macros. 6-19

Change in Share . 6-20
Using Macros That Calculate Change in Share 6-21

Views . 6-22
Selecting from Views 6-23

INSERT INTO SELECT Statement. 6-25
Creating a Temporary Table 6-26

Summary . 6-28
CREATE MACRO Statement 6-28
CREATE VIEW Statement 6-28
CREATE TEMPORARY TABLE Statement 6-28
INSERT INTO SELECT Statement 6-28

6-2 SQL
 Self-Study Guide

In This Chapter
This chapter shows how to simplify SQL statements with RISQL macros.

A macro is an abbreviation for a complex expression. Macros allow you to
write concise, reusable SQL statements.

This chapter also presents simple examples of two other means of simpli-
fying data retrieval, views and temporary tables.

The examples in this chapter show how to:

■ Abbreviate a lengthy or frequently used expression or query by
writing a macro

■ Write a macro that contains other macros

■ Write generalized macros that use parameters

■ Create and query a view

■ Create, populate, and query a temporary table
Macros, Views, and Temporary Tables 6-3

Basic Macros
Basic Macros

Question
What were the total sales of tea products during 1999?

CREATE MACRO Statement
create macro tea_products as

(pt.classkey = 2 or pt.classkey = 5);

Example Query
select prod_name,

case pt.classkey when 2 then 'Bulk Tea'
when 5 then 'Pkg Tea' end as class,

sum(dollars) as sales_99
from product pt join sales sa

on pt.classkey = sa.classkey
and pt.prodkey = sa.prodkey

join period pd on pd.perkey = sa.perkey
where tea_products

and year = 1999
group by prod_name, pt.classkey
order by sales_99 desc;

Result

Prod_Name Class Sales_99

Darjeeling Special Bulk Tea 80610.50

Darjeeling Special Pkg Tea 51266.00

Assam Gold Blend Bulk Tea 42329.00

Darjeeling Number 1 Bulk Tea 34592.75

Irish Breakfast Bulk Tea 27763.75

 (1 of 2)
6-4 SQL Self-Study Guide

Using Basic Macros
Using Basic Macros
A macro is an abbreviation for a complex expression. For example, you can
define a short, meaningful name for a numeric code and reference the code
by its macro name rather than by a string of digits. In the same way, you can
define a macro for a complete set of conditions and reference those conditions
in a query with the macro name. The set of conditions might be a complete
SELECT statement or a specific clause in a SELECT statement, for example.

A macro name is a character string that begins with a letter and does not
exceed 128 characters. The database server is not sensitive to case: share and
SHARE are equivalent. RISQL keywords cannot be used as macro names.

Assam Gold Blend Pkg Tea 27192.50

English Breakfast Bulk Tea 25848.00

Breakfast Blend Bulk Tea 24594.00

Darjeeling Number 1 Pkg Tea 24232.00

Earl Grey Bulk Tea 23269.50

Special Tips Bulk Tea 22326.00

Assam Grade A Bulk Tea 21964.00

Gold Tips Bulk Tea 21584.50

Irish Breakfast Pkg Tea 20084.00

English Breakfast Pkg Tea 18955.00

Breakfast Blend Pkg Tea 17031.50

Gold Tips Pkg Tea 16783.25

Special Tips Pkg Tea 16773.25

Assam Grade A Pkg Tea 16724.00

Earl Grey Pkg Tea 16108.00

Prod_Name Class Sales_99

 (2 of 2)
Macros, Views, and Temporary Tables 6-5

Using Basic Macros
CREATE MACRO Syntax

CREATE MACRO macro_name AS definition;

Existing macros must be dropped before a macro of the same name can be
defined:

DROP MACRO macro_name;

The CREATE MACRO and DROP MACRO statements have additional optional
parameters. For details, refer to the SQL Reference Guide.

About the Query

The macro tea_products is based on the knowledge that Classkey values 2
and 5 always refer to bulk tea and packaged tea products, respectively. The
Classkey values are queried from the Product table rather than the Class
table to simplify the joins in the query; a CASE expression is used to convert
the Classkey values to meaningful text values.

The query calculates the 1999 sales totals for all tea products using the macro
name. When the database server interprets the query, the macro name is
replaced with the character string defined in the CREATE MACRO statement.

The parentheses around the macro definition are required in the example
query. They force the correct evaluation of the logical operators defined in the
macro.

macro_name A unique name that you specify in an SQL statement to call
the macro definition.

definition A complete or partial SQL statement. Only one complete SQL
statement can occur in the definition.
6-6 SQL Self-Study Guide

Embedded Macros
Embedded Macros

Question
What were the total sales of tea products during 1999?

CREATE MACRO Statements
create macro case_tea as

case pt.classkey when 2 then 'Bulk Tea'
when 5 then 'Pkg Tea'
end as class;

create macro tea_totals as
select prod_name, case_tea, sum(dollars) as sales_99
from product pt join sales sa

on pt.classkey = sa.classkey and pt.prodkey = sa.prodkey
join period pd on pd.perkey = sa.perkey

where tea_products
and year = 1999

group by prod_name, class
order by sales_99 desc;

Example Query
tea_totals;

Result

Prod_Name Class Sales_99

Darjeeling Special Bulk Tea 80610.50

Darjeeling Special Pkg Tea 51266.00

Assam Gold Blend Bulk Tea 42329.00

Darjeeling Number 1 Bulk Tea 34592.75

Irish Breakfast Bulk Tea 27763.75

 (1 of 2)
Macros, Views, and Temporary Tables 6-7

Result
Assam Gold Blend Pkg Tea 27192.50

English Breakfast Bulk Tea 25848.00

Breakfast Blend Bulk Tea 24594.00

Darjeeling Number 1 Pkg Tea 24232.00

Earl Grey Bulk Tea 23269.50

Special Tips Bulk Tea 22326.00

Assam Grade A Bulk Tea 21964.00

Gold Tips Bulk Tea 21584.50

Irish Breakfast Pkg Tea 20084.00

English Breakfast Pkg Tea 18955.00

Breakfast Blend Pkg Tea 17031.50

Gold Tips Pkg Tea 16783.25

Special Tips Pkg Tea 16773.25

Assam Grade A Pkg Tea 16724.00

Earl Grey Pkg Tea 16108.00

Prod_Name Class Sales_99

 (2 of 2)
6-8 SQL Self-Study Guide

Using Embedded Macros
Using Embedded Macros
An embedded macro is a macro that occurs within the definition of another
macro.

About the Query

The CREATE MACRO statements in this example define two macros: case_tea
and tea_totals.

■ The first macro contains a CASE expression that replaces each
Classkey with a meaningful class type, the same CASE expression
that was used in the FROM clause of the query on page 6-4.

■ The second macro is a complete SELECT statement that contains two
embedded macros: case_tea and tea_products (defined on page 6-4).

To execute the macro tea_totals, enter the macro name:

tea_totals;

The result set is identical to the one returned by the previous example on
page 6-4.

Usage Notes

Macros can be embedded more than one level down.

A macro definition can contain the name of a defined macro, but it cannot
contain another macro definition.
Macros, Views, and Temporary Tables 6-9

Macros with Parameters
Macros with Parameters

Question
What were the total sales of tea products during any given year?

CREATE MACRO Statement
create macro tea_sales(yr) as

select year, prod_name, case_tea,
sum(dollars) as us_sales

from product pt join sales sa
on pt.classkey = sa.classkey and pt.prodkey = sa.prodkey
join period pd on pd.perkey = sa.perkey

where tea_products
and year = yr

group by year, prod_name, class
order by us_sales desc;

Example Query
tea_sales(1998);
6-10 SQL Self-Study Guide

Result
Result

Year Prod_Name Class US_Sales

1998 Darjeeling Special Bulk Tea 75582.00

1998 Darjeeling Special Pkg Tea 51625.00

1998 Assam Gold Blend Bulk Tea 43091.00

1998 Darjeeling Number 1 Bulk Tea 36442.00

1998 Assam Gold Blend Pkg Tea 28328.00

1998 Irish Breakfast Bulk Tea 27440.75

1998 English Breakfast Bulk Tea 27071.00

1998 Darjeeling Number 1 Pkg Tea 25841.25

1998 Earl Grey Bulk Tea 24721.00

1998 Breakfast Blend Bulk Tea 24689.25

1998 Gold Tips Bulk Tea 23181.25

1998 Special Tips Bulk Tea 22712.25

1998 Assam Grade A Bulk Tea 22418.00

1998 Irish Breakfast Pkg Tea 21318.25

1998 Breakfast Blend Pkg Tea 17606.25

1998 English Breakfast Pkg Tea 17310.00

1998 Assam Grade A Pkg Tea 16787.00

1998 Earl Grey Pkg Tea 16416.00

1998 Special Tips Pkg Tea 15883.75

1998 Gold Tips Pkg Tea 15732.50
Macros, Views, and Temporary Tables 6-11

Using Macros with Parameters
Using Macros with Parameters
A macro can be generalized with one or more parameters, which can be
changed each time the macro is executed. For example, a macro can be
written with a parameter for year so that the same macro retrieves values for
any year stored in the database. Similarly, a macro that contains parameters
for product markets can retrieve data for any specified market.

CREATE MACRO Statement

Define a parameterized macro with the following command:

CREATE MACRO macro_name([parameter [, parameter] …]) AS
definition;

When you call a parameterized macro in a SELECT statement, you must
include a value for each parameter defined in the CREATE MACRO statement.

About the Query

The CREATE MACRO statement defines a SELECT statement that contains a
parameter for year (yr). When the macro tea_sales(1998) is executed, the
database server replaces each occurrence of the parameter yr with 1998. This
query can be executed for any year for which sales data exists in the database
(1998, 1999, or 2000 for the Aroma database).

macro_name A unique name that refers to the macro definition.

parameter A value that customizes a generic macro. It can be changed
each time the macro is used.

definition A complete or partial SQL statement. Only one complete SQL
statement can occur in the definition.
6-12 SQL Self-Study Guide

Multiparameter Macros
Multiparameter Macros

Question
What were the best-selling products in a given location in a given year?

CREATE MACRO Statement
create macro top_rank(yr, locn, nbr) as

select prod_name, city, year, sum(dollars) as sales,
rank(sum(dollars)) as ranking

from product pt join sales sa
on pt.prodkey = sa.prodkey and pt.classkey = sa.classkey
join period pd on pd.perkey = sa.perkey
join store se on se.storekey = sa.storekey

where city = locn and year = yr
group by prod_name, city, year
when rank(sum(dollars)) <= nbr;

Example Query 1 and Result
top_rank(1998, 'Los Angeles', 5);

Prod_Name City Year Sales Ranking

Xalapa Lapa Los Angeles 1998 14930.00 1

Demitasse Ms Los Angeles 1998 14402.25 2

Ruby's Allspice Los Angeles 1998 14339.00 3

Aroma Roma Los Angeles 1998 14253.25 4

Expresso XO Los Angeles 1998 13179.50 5
Macros, Views, and Temporary Tables 6-13

Example Query 2 and Result
Example Query 2 and Result
top_rank(1999, 'San Jose', 1);

Example Query 3 and Result
top_rank(2000, 'Hartford', 3);

Macros with Multiple Parameters
A macro can have multiple parameters. For example, you can define a macro
with parameters for year, region, and product name.

About the Query

This CREATE MACRO statement defines a SELECT statement that contains
three parameters:

(yr, locn, nbr)

They represent the year, the city (or location), and the maximum number of
rank values to be returned.

Query 1 retrieves the five best-selling products in Los Angeles during 1998:

top_rank(1998, 'Los Ang%', 5);

Prod_Name City Year Sales Ranking

Demitasse Ms San Jose 1999 32887.75 1

Prod_Name City Year Sales Ranking

NA Lite Hartford 2000 5061.00 1

Cafe Au Lait Hartford 2000 4665.00 2

Xalapa Lapa Hartford 2000 4610.00 3
6-14 SQL Self-Study Guide

Comparisons
When the macro is executed, the database server replaces each occurrence of
the three parameters with 1998, Los Angeles, and 5. Queries 2 and 3 show
results for other years, locations, and rankings.

Usage Notes

Time periods such as days, weeks, months, quarters, and years are good
candidates for parameters. So are product names, brands, trademarks, and
suppliers.

The RANK function is discussed in detail in Chapter 3, “Data Analysis.”

There are two Aroma stores in San Jose, but only one in Hartford and Los
Angeles; the results in Query 2 represent the sum of dollars for both San Jose
stores.

The sales figures in the result set for Query 3 are significantly smaller because
the Aroma database contains sales figures for only the first quarter of 2000
but for all four quarters of 1998 and 1999.

Comparisons

Question
How do the monthly sales of Lotta Latte in San Jose compare during the first
quarters of 1999 and 2000 in terms of both dollars and quantities?

CREATE MACRO Statement
create macro lotta_sales(facts, yr) as (

select sum(facts)
from store t natural join sales s

natural join product p
natural join period d

where d.month = e.month
and d.year = e.yr
and p.prod_name = q.prod_name
and t.city = u.city);
Macros, Views, and Temporary Tables 6-15

Example Query 1 and Result
Example Query 1 and Result
select q.prod_name, e.month, sum(dollars) as sales_99,

lotta_sales(dollars, year+1) as sales_00
from store u natural join product q natural join period e

natural join sales l
where qtr = 'Q1_99'

and prod_name like 'Lotta Latte%'
and city like 'San J%'

group by q.prod_name, e.month, e.year, u.city;

Example Query 2 and Result
select q.prod_name, e.month, sum(dollars) as sales_99,

lotta_sales(dollars, year+1) as sales_00,
lotta_sales(quantity, year) as qty_99,
lotta_sales(quantity, year+1) as qty_00

from store u natural join product q natural join period e
natural join sales l

where qtr = 'Q1_99'
and prod_name like 'Lotta Latte%'
and city like 'San J%'

group by q.prod_name, e.month, e.year, u.city;

Prod_Name Month Sales_99 Sales_00

Lotta Latte JAN 1611.00 3475.00

Lotta Latte FEB 3162.50 2409.50

Lotta Latte MAR 2561.50 2831.50

Prod_Name Month Sales_99 Sales_00 Qty_99 Qty_00

Lotta Latte JAN 1611.00 3475.00 197 426

Lotta Latte FEB 3162.50 2409.50 391 298

Lotta Latte MAR 2561.50 2831.50 314 348
6-16 SQL Self-Study Guide

Using Comparison Macros
Using Comparison Macros
A query is often built from a basic block of instructions that is repeated
several times with minor variations. These variations are often good candi-
dates for macro parameters. For example, a query that compares sales during
the current year with sales during the previous year must contain similar
blocks of instructions: One block retrieves sales for the current year, the other
for the previous year. A macro that contains a parameter for year reduces the
number of instructions you must enter manually.

About the Query

In queries 1 and 2, the main query retrieves the monthly sales of Lotta Latte
in San Jose during the first quarter of 1999 and the macro (a subquery)
retrieves the corresponding figures for 2000.

The following macro subquery can retrieve one of two types of facts, dollars
or quantity, for a specified year:

lotta_sales(facts, yr)

The Sales table contains additive columns for dollars and quantity only; a
production database would probably contain many more types of facts.

In Query 1, the macro references the Dollars column of the Sales table and
the year 2000:

lotta_sales(dollars, year+1)

The following expression evaluates to 2000 because the WHERE clause
constraint in the main query refers to the year 1999:

year+1

This macro might not seem worth the effort to design until you begin to build
more complex queries with it. For example, in Query 2, the macro is refer-
enced three times, producing three different columns in the result set.

Usage Notes

This macro is based on a correlated subquery defined in the select list;
however, equivalent subqueries defined in the FROM clause often result in
faster performance, as described in Chapter 4, “Comparison Queries.”
Macros, Views, and Temporary Tables 6-17

Share Comparisons
Share Comparisons

Question
What were the monthly sales of Lotta Latte in San Jose during the first three
months of 2000 and 1999? What was the share (percent) for each month of the
quarter in each year?

CREATE MACRO Statement
create macro lotta_qtr_sales(facts, yr) as

(select sum(facts)
from store t natural join sales s

natural join product p
natural join period d

where substr(d.qtr,1,2) = substr(e.qtr,1,2)
and d.year = e.yr
and p.prod_name = q.prod_name
and t.city = u.city);

Example Query
select q.prod_name, e.month, sum(dollars) as sales_99,

dec(100*sales_99/lotta_qtr_sales(dollars, year),7,2) as
share_qtr_99,

lotta_sales(dollars, year+1) as sales_00,
dec(100*sales_00/lotta_qtr_sales(dollars, year+1),7,2) as

share_qtr_00
from store u natural join product q

natural join period e
natural join sales l

where qtr = 'Q1_99'
and prod_name like 'Lotta Latte%'
and city like 'San J%'

group by q.prod_name, e.month, e.qtr, e.year, u.city, sales_00;
6-18 SQL Self-Study Guide

Result
Result

Using Share Comparison Macros
Macros can also simplify calculations. For example, if you have a macro that
retrieves monthly sales for a product and another macro that calculates the
sum of the sales for that product during the quarter or year, you can easily
calculate the monthly share of the total sales for the quarter or year.

This share is expressed as a simple percentage calculation. For example:

100*(monthly_sales/quarterly_sales)

This kind of macro can be applied to other years as well.

About the Query

This query retrieves monthly sales of Lotta Latte in San Jose during the first
quarters of 1999 and 2000 and calculates for each month the share of the
quarter during these years. This query would be much longer and more
difficult to understand without the three macros.

The following macro works the same in this query as in the previous example
in this chapter:

lotta_sales(facts, yr)

The following macro is another subquery that calculates, in this case,
quarterly sales dollars for the specified year:

lotta_qtr_sales(facts, yr)

Prod_Name Month Sales_99 Share_Qtr_99 Sales_00 Share_Qtr_00

Lotta Latte JAN 1611.00 21.96 3475.00 39.86

Lotta Latte FEB 3162.50 43.11 2409.50 27.64

Lotta Latte MAR 2561.50 34.92 2831.50 32.48
Macros, Views, and Temporary Tables 6-19

Change in Share
Alternatively, the macro could be used to calculate quarterly sales quantities.
The results of this macro are not displayed in the report but used as the
source data for the two share calculations.

The SUBSTR function is used in the macro definition to correlate the Qtr
column values based on their first two characters (Q1). This constraint is
necessary because the Qtr values in the Period table are specific to each year
(Q1_99 versus Q1_00, for example). For more information about the SUBSTR
function, refer to the SQL Reference Guide.

Usage Notes

The GROUP BY clause must include the Sales_00 column, as well as the other
nonaggregate columns that either appear in the select list or are referenced in
the correlation conditions of the subqueries.

Change in Share

Question
When you compare the monthly sales of Lotta Latte in San Jose during the
first quarter of 1999 and the first quarter of 2000:

■ Did the sales figures for each month go up or down? By what
percentage?

■ Did the share-of-quarter percentage for each month go up or down?
By what percentage?
6-20 SQL Self-Study Guide

Example Query
Example Query
select q.prod_name, e.month, sum(dollars) as sales_99,

lotta_sales(dollars, year+1) as sales_00,
dec(100*((sales_00 - sales_99)/sales_99),7,2) as sales_chg,
dec(100*

((sales_00/lotta_qtr_sales(dollars, year+1))
-
(sales_99/lotta_qtr_sales(dollars, year)))
,7,2)
as share_chg

from store u natural join product q
natural join period e natural join sales l

where e.year = 1999
and e.qtr = 'Q1_99'
and q.prod_name like 'Lotta Latte%'
and u.city like 'San J%'

group by q.prod_name, e.month, e.qtr, e.year, u.city, sales_00;

Result

Using Macros That Calculate Change in Share
When analysts have macros at their disposal, they can think more about sales
and markets and less about how to express their business questions with SQL.

For example, the change in monthly sales for a product over two years can be
expressed as a percentage by using the following calculation:

100*((monthly_sales_00 - monthly_sales_99)/monthly_sales_99)

Similarly, the change in the product share for a quarter can be calculated as
follows:

100*(monthly_sales_00/quarterly_sales_00)
-
(monthly_sales_99/quarterly_sales_99)

Prod_Name Month Sales_99 Sales_00 Sales_Chg Share_Chg

Lotta Latte JAN 1611.00 3475.00 115.70 17.90

Lotta Latte FEB 3162.50 2409.50 -23.81 -15.47

Lotta Latte MAR 2561.50 2831.50 10.54 -2.43
Macros, Views, and Temporary Tables 6-21

Views
Neither percentage is difficult to calculate, but macros simplify the writing of
a query that returns these percentages.

About the Query

The two previously defined macros (lotta_sales and lotta_qtr_sales) are used
in the example query to calculate the percentage change in monthly sales for
the Lotta Latte product, as well as the change in share-of-quarter for product
sales in corresponding months from 1999 and 2000.

Views

Question
What were the sales totals and ranks by store for Assam Gold Blend tea in
1999?

CREATE VIEW Statement
create view tea_sales99

as select prod_name, store_name, sum(dollars) as
tea_dollars, rank(sum(dollars)) as tea_rank

from sales natural join product
natural join period
natural join store

where sales.classkey in (2, 5)
and year = 1999

group by prod_name, store_name;

Example Query
select prod_name, store_name, tea_dollars, tea_rank
from tea_sales99
where prod_name like 'Assam Gold%';
6-22 SQL Self-Study Guide

Result
Result

Selecting from Views
Analysts might be interested in certain products or time periods only, rather
than the full range of facts and dimensions stored in the database. You can
create views, which are read-only tables that contain subsets of information
from existing tables or views, to make access to the specific data you want to
query both easier and faster.

Prod_Name Store_Name Tea_Dollars Tea_Rank

Assam Gold Blend Beans of Boston 6201.50 15

Assam Gold Blend Beaches Brew 6080.00 16

Assam Gold Blend Texas Teahouse 5422.50 17

Assam Gold Blend Olympic Coffee Company 5350.50 18

Assam Gold Blend Cupertino Coffee Supply 5277.00 19

Assam Gold Blend Moroccan Moods 5178.50 20

Assam Gold Blend Coffee Brewers 5151.00 21

Assam Gold Blend Moulin Rouge Roasting 4977.00 22

Assam Gold Blend East Coast Roast 4769.00 25

Assam Gold Blend Miami Espresso 4506.50 28

Assam Gold Blend Roasters, Los Gatos 4414.50 29

Assam Gold Blend San Jose Roasting Company 4226.50 32

Assam Gold Blend Instant Coffee 4190.50 33

Assam Gold Blend Java Judy's 3776.50 40
Macros, Views, and Temporary Tables 6-23

Selecting from Views
CREATE VIEW Syntax

CREATE VIEW view_name AS query_expression

To create a precomputed view, you must add another USING clause. For
information about precomputed views, refer to the Informix Vista User’s
Guide.

About the Query

This view contains four columns:

■ Product names (Prod_Name)

■ Store names (Store_Name)

■ Aggregated sales totals per store, per tea product for 1999
(Tea_Totals)

■ Rankings based on the aggregated sales totals (Tea_Rank)

The query simply constrains on the Prod_Name column to return sales totals
and ranks per store for Assam Gold Blend tea.

The following search condition ensures that only tea products are selected by
the view:

where sales.classkey in (2, 5)

In the Class table, the Classkey values are meaningful and map to specific
groups of products.

Usage Notes

This business question can be asked with or without creating the view;
however, the view improves performance and simplifies the analyst’s
approach to writing queries.

query_expression Any join or nonjoin query expression, as defined in the
SQL Reference Guide.
6-24 SQL Self-Study Guide

INSERT INTO SELECT Statement
Query expressions cannot contain ORDER BY clauses; therefore, it might not
be practical to include an order-dependent display function in a CREATE
VIEW statement. Because the RANK function is not order-dependent (unlike
CUME, for example), it is used successfully in the example query. For detailed
information about RISQL display functions, refer to the SQL Reference Guide.

INSERT INTO SELECT Statement

Question
Create a temporary table to hold daily and cumulative sales totals for
clothing products. Issue a SELECT statement on the table to retrieve data only
for stores in Los Angeles.

CREATE TEMPORARY TABLE Statement
create temporary table clothing_sales
(date date,
prod_name char(30),
city char(20),
dollars dec(7,2),
cume_tot integer);

INSERT Statement
insert into clothing_sales

(date, prod_name, city, dollars, cume_tot)
select date, prod_name, city, dollars, cume(dollars)
from store s join sales l on s.storekey = l.storekey

join period t on l.perkey = t.perkey
join product p on l.classkey = p.classkey

and l.prodkey = p.prodkey
join class c on p.classkey = c.classkey

where class_type = 'Clothing'
order by date, city
reset by date;

** INFORMATION ** (209) Rows inserted: 816.
Macros, Views, and Temporary Tables 6-25

Example Query
Example Query
select date, prod_name, dollars, cume_tot
from clothing_sales
where city = 'Los Angeles'

and extract(year from date) = 2000
order by date;

Result

Creating a Temporary Table
If you have resource or DBA authorization for a database, you can create a
temporary table that contains the result set of a query. Temporary tables are
useful when you want to perform repeated analysis on a result set without
reprocessing the original query. For example, you can store the results of
RISQL display functions in temporary tables and issue SELECT statements
against them to further constrain the result data. When you use display
functions to fill a temporary table, remember to order the data to ensure that
the results of the display-function column are accurate.

Date Prod_Name Dollars Cume_Tot

2000-01-08 Aroma t-shirt 197.10 308

2000-01-18 Aroma t-shirt 131.40 131

2000-01-18 Aroma baseball cap 135.15 266

2000-01-23 Aroma baseball cap 15.90 15

2000-02-01 Aroma t-shirt 175.20 175

2000-02-04 Aroma t-shirt 164.25 164

...
6-26 SQL Self-Study Guide

Creating a Temporary Table
INSERT INTO SELECT

INSERT INTO table_name select_statement

About the Query

The example query shows how to create a temporary table named
Clothing_Sales, insert daily and cumulative sales totals into it, and query it
by issuing a standard SELECT statement.

The results of the query in the example could be retrieved with more limiting
search conditions in a regular SELECT statement. However, creating a
temporary table to store cumulative totals improves query performance
when you are working with large fact tables.

Usage Notes

Temporary tables are removed from the database automatically when your
SQL session ends. These tables are not visible to other users connected to the
same database.

To create tables in a Red Brick Decision Server database, you must have
resource or DBA authorization. Along with resource and DBA authorization
comes INSERT privilege, which allows you to insert data into any tables you
create. For a complete discussion of authorizations and privileges, refer to the
SQL Reference Guide.

The CREATE TABLE statement for a temporary table must define columns that
are of the same data type and size as columns defined in the base tables of the
database. Otherwise, input data from the INSERT INTO…SELECT statement
will be incompatible with columns in the temporary table.

table_name A valid table name.

select_statement A complete or partial SELECT statement, as defined in the
SQL Reference Guide.
Macros, Views, and Temporary Tables 6-27

Summary
Summary
This chapter showed how to simplify SQL statements with RISQL macros and
how to create views and temporary tables with the CREATE VIEW, CREATE
TEMPORARY TABLE, and INSERT INTO...SELECT statements.

CREATE MACRO Statement
CREATE MACRO macro_name(parameter [, parameter] …) AS definition ;

A macro name is a character string that begins with a letter and does not
exceed 128 characters. Macro names are not case sensitive. A RISQL keyword
cannot be a macro name.

When you call a parameterized macro, you must include a value for each
parameter defined in the CREATE MACRO statement.

CREATE VIEW Statement
CREATE VIEW view_name AS query_expression

CREATE TEMPORARY TABLE Statement
CREATE TEMPORARY TABLE table_name (column_definitions)

INSERT INTO SELECT Statement
INSERT INTO table_name select_statement
6-28 SQL Self-Study Guide

A
Appendix
The Complete Aroma
Database
Appendix A describes all of the tables in the Aroma database,
which consists of two schemas—a simple star schema for retail
sales information and a multistar schema for purchasing
information.

Most of the examples in this document use the tables in the retail
schema. The purchasing tables are used in a few examples that
require a more flexible schema for adequate illustration.

Aroma Database—Retail Schema
Aroma Database—Retail Schema
Most of the examples in this guide are based on data from the basic Aroma
database, which tracks daily retail sales in stores owned by the Aroma Coffee
and Tea Company. The following figure illustrates this basic schema.

The crow’s-feet in this diagram indicate a one-to-many relationship between
the two tables. For example, each distinct value in the Perkey column of the
Period table can occur only once in that table but many times in the Sales
table.

perkey
date
day
week
month
qtr
year

Market
Store

Period

storekey
mktkey
store_type
store_name
street
city
state
zip

mktkey
hq_city
hq_state
district
region

promokey
promo_type
promo_desc
value
start_date
end_date

Promotion

Class
classkey
class_type
class_desc

Product
classkey
prodkey
prod_name
pkg_type

Sales
perkey
classkey
prodkey
storekey
promokey
quantity
dollars
A-2 SQL Self-Study Guide

Basic Aroma Schema
Basic Aroma Schema
The following tables make up the basic Aroma database:

The Period, Class, Product, Market, Store, and Promotion tables are
examples of typical business dimensions: They are small and contain
descriptive data that is familiar to users.

The Sales table is a good example of a fact table: It contains thousands of
rows, and its largely additive information is accessed in queries by joins to
the dimension tables it references.

Period Defines time intervals such as days, months, and years.

Class Defines classes of products sold at retail stores.

Product Defines individual products sold at retail stores, including bulk
and packaged coffee and tea, coffee machines, and so on.

Market Defines the geographical markets of the business.

Store Defines individual retail stores owned and operated by the
Aroma Coffee and Tea Company.

Promotion Defines the types, durations, and values of promotions run on
different products.

Sales Contains the sales figures for Aroma products during time
periods at various stores.
The Complete Aroma Database A-3

Sample Data from the Class and Product Tables
Sample Data from the Class and Product Tables

Query
select * from class;

Result

Query
select * from product;

Classkey Class_Type Class_Desc

 1 Bulk_beans Bulk coffee products

 2 Bulk_tea Bulk tea products

 3 Bulk_spice Bulk spices

 4 Pkg_coffee Individually packaged coffee products

 5 Pkg_tea Individually packaged tea products

 6 Pkg_spice Individually packaged spice products

 7 Hardware Coffee mugs, teapots, spice jars, espresso machines

 8 Gifts Samplers, gift boxes and baskets, etc.

 12 Clothing T-shirts, caps, etc.
A-4 SQL Self-Study Guide

Result
Result

The Class and Product Tables
The Product table describes the products defined in the Aroma database. The
Class table describes the classes to which those products belong.

If a dimension table contains foreign-key columns that reference other
dimension tables, the referenced tables are called outboard or outrigger tables.
The Classkey column of the Product table is a foreign-key reference to the
Class table, so the Class table is an outboard table.

Classkey Prodkey Prod_Name Pkg_Type

1 0 Veracruzano No pkg

1 1 Xalapa Lapa No pkg

1 10 Colombiano No pkg

1 11 Expresso XO No pkg

1 12 La Antigua No pkg

1 20 Lotta Latte No pkg

1 21 Cafe Au Lait No pkg

1 22 NA Lite No pkg

1 30 Aroma Roma No pkg

1 31 Demitasse Ms No pkg

2 0 Darjeeling Number 1 No pkg

2 1 Darjeeling Special No pkg

2 10 Assam Grade A No pkg

...
The Complete Aroma Database A-5

The Class and Product Tables
Column Descriptions: Class Table

Column Descriptions: Product Table

Column Name Contents

classkey Integer that identifies exactly one row in the Class table.
Classkey is the primary key.

class_type Character string that identifies a group of products.

class_desc Character string that describes a group of products.

Column Name Contents

classkey Foreign-key reference to the Class table.

prodkey Integer that combines with the Classkey value to identify exactly
one row in the Product table. Classkey/Prodkey is a two-column
primary key.

prod_name Character string that identifies a product. The database contains
59 products. A fully populated database would have many more.
Although some Aroma products have the same name, they
belong to different classes and have different package types.

pkg_type Character string that identifies the type of packaging for each
product.
A-6 SQL Self-Study Guide

Sample Data from the Store and Market Tables
Sample Data from the Store and Market Tables

Query
select * from market;

Result

Query
select * from store;

Mktkey HQ_City HQ_State District Region

1 Atlanta GA Atlanta South

2 Miami FL Atlanta South

3 New Orleans LA New Orleans South

4 Houston TX New Orleans South

5 New York NY New York North

...
The Complete Aroma Database A-7

Result
Result

Some columns have been truncated to fit on the page.

The Market and Store Tables
The Store table defines the stores that sell Aroma products. The Market table
describes the U.S. markets to which each store belongs. Each market is
identified by a major metropolitan city. The Market table is an outboard
table, like the Class table.

Storekey Mktkey Store_Type Store_Name Street City State Zip

1 14 Small Roasters, Los Gatos 1234 University Ave Los Gatos CA 95032

2 14 Large San Jose Roasting 5678 Bascom Ave San Jose CA 95156

3 14 Medium Cupertino Coffee 987 DeAnza Blvd Cupertino CA 97865

4 3 Medium Moulin Rouge 898 Main Street New Orleans LA 70125

5 10 Small Moon Pennies 98675 University Detroit MI 48209

6 9 Small The Coffee Club 9865 Lakeshore Bl Chicago IL 06060

...
A-8 SQL Self-Study Guide

The Market and Store Tables
Market Table—Column Descriptions

Store Table—Column Descriptions

Column Name Contents

mktkey Integer that identifies exactly one row in the Market table.
Mktkey is the primary key.

hq_city Character string that identifies a city. The Market table defines 17
cities. A fully populated database could have thousands.

state Character string that identifies a state.

district Character string that identifies a district based on a major
metropolitan city. A global database would contain countries and
nations or other geographic dimensions.

region Character string that identifies a region. The Market table defines
only four regions for the entire United States. A comprehensive
database would include numerous regions and probably more
districts within a region.

Column Name Contents

storekey Integer that identifies exactly one row in the Store table. Storekey
is the primary key.

mktkey Foreign-key reference to the Market table.

store_type Character string that identifies stores by size.

store_name Character string that identifies a store by name.

street, city, state,
zip

Columns that identify the address of each store.
The Complete Aroma Database A-9

Sample Data from the Period Table
Sample Data from the Period Table

Query
select * from period;

Result

Perkey Date Day Week Month Qtr Year

1 1998-01-01 TH 1 JAN Q1_98 1998

2 1998-01-02 FR 1 JAN Q1_98 1998

3 1998-01-03 SA 1 JAN Q1_98 1998

4 1998-01-04 SU 2 JAN Q1_98 1998

5 1998-01-05 MO 2 JAN Q1_98 1998

6 1998-01-06 TU 2 JAN Q1_98 1998

7 1998-01-07 WE 2 JAN Q1_98 1998

8 1998-01-08 TH 2 JAN Q1_98 1998

9 1998-01-09 FR 2 JAN Q1_98 1998

10 1998-01-10 SA 2 JAN Q1_98 1998

11 1998-01-11 SU 3 JAN Q1_98 1998

12 1998-01-12 MO 3 JAN Q1_98 1998

13 1998-01-13 TU 3 JAN Q1_98 1998

14 1998-01-14 WE 3 JAN Q1_98 1998

15 1998-01-15 TH 3 JAN Q1_98 1998

16 1998-01-16 FR 3 JAN Q1_98 1998

17 1998-01-17 SA 3 JAN Q1_98 1998

 (1 of 2)
A-10 SQL Self-Study Guide

The Period Table
The Period Table
The Period table defines daily, weekly, monthly, quarterly, and yearly time
periods for 1998 and 1999 and the first quarter of 2000.

Column Descriptions

18 1998-01-18 SU 4 JAN Q1_98 1998

19 1998-01-19 MO 4 JAN Q1_98 1998

20 1998-01-20 TU 4 JAN Q1_98 1998

...

Column Name Contents

perkey Integer that identifies exactly one row in the Period table. Perkey
is the primary key.

date Date value that identifies each day from January 1, 1998 through
March 31, 2000.

day Character-string abbreviation of the day of the week.

week Integer that identifies each week of each year by number (1
through 53, each new week starting on a Sunday).

month Character-string abbreviation of the name of each month.

qtr Character string that uniquely identifies each quarter (for
example, Q1_98, Q3_99).

year Integer that identifies the year.

Perkey Date Day Week Month Qtr Year

 (2 of 2)
The Complete Aroma Database A-11

Sample Data from the Promotion Table
Sample Data from the Promotion Table

Query
select * from promotion;

Result

Promokey Promo_Type Promo_Desc Value Start_Date End_Date

0 1 No promotion 0.00 9999-01-01 9999-01-01

1 100 Aroma catalog coupon 1.00 1998-01-01 1998-01-31

2 100 Aroma catalog coupon 1.00 1998-02-01 1998-02-28

3 100 Aroma catalog coupon 1.00 1998-03-01 1998-03-31

4 100 Aroma catalog coupon 1.00 1998-04-01 1998-04-30

5 100 Aroma catalog coupon 1.00 1998-05-01 1998-05-31

6 100 Aroma catalog coupon 1.00 1998-06-01 1998-06-30

7 100 Aroma catalog coupon 1.00 1998-07-01 1998-07-31

8 100 Aroma catalog coupon 1.00 1998-08-01 1998-08-31

9 100 Aroma catalog coupon 1.00 1998-09-01 1998-09-30

10 100 Aroma catalog coupon 1.00 1998-10-01 1998-10-31

11 100 Aroma catalog coupon 1.00 1998-11-01 1998-11-30

12 100 Aroma catalog coupon 1.00 1998-12-01 1998-12-31

13 100 Aroma catalog coupon 1.00 1999-01-01 1999-01-31

14 100 Aroma catalog coupon 1.00 1999-02-01 1999-02-28

15 100 Aroma catalog coupon 1.00 1999-03-01 1999-03-31

16 100 Aroma catalog coupon 1.00 1999-04-01 1999-04-30

 (1 of 2)
A-12 SQL Self-Study Guide

The Promotion Table
The Promotion Table
The Promotion table is a dimension table that describes promotions that are
run on different products during different time periods. Promotion tables are
sometimes referred to as condition tables because they indicate the conditions
under which goods are sold.

Column Descriptions

17 100 Aroma catalog coupon 1.00 1999-05-01 1999-05-31

18 100 Aroma catalog coupon 1.00 1999-06-01 1999-06-30

19 100 Aroma catalog coupon 1.00 1999-07-01 1999-07-31

20 100 Aroma catalog coupon 1.00 1999-08-01 1999-08-31

...

Column Name Contents

promokey Integer that identifies exactly one row in the Promotion table.
Promokey is the primary key.

promo_type Integer that identifies the promotion by number (or code).

promo_desc Character string that describes the promotion type.

value Decimal number that represents the dollar value of the
promotion, such as a price reduction or the value of a coupon.

start_date,
end_date

Date values that indicate when each promotion begins and ends.

Promokey Promo_Type Promo_Desc Value Start_Date End_Date

 (2 of 2)
The Complete Aroma Database A-13

Sample Data from the Sales Table
Sample Data from the Sales Table

Query
select * from sales;

Result

Perkey Classkey Prodkey Storekey Promokey Quantity Dollars

2 2 0 1 116 8 34.00

2 4 12 1 116 9 60.75

2 1 11 1 116 40 270.00

2 2 30 1 116 16 36.00

2 5 22 1 116 11 30.25

2 1 30 1 116 30 187.50

2 1 10 1 116 25 143.75

2 4 10 2 0 12 87.00

2 4 11 2 0 14 115.50

2 2 22 2 0 18 58.50

2 4 0 2 0 17 136.00

2 5 0 2 0 13 74.75

2 4 30 2 0 14 101.50

2 2 10 2 0 18 63.00

2 1 22 3 0 11 99.00

2 6 46 3 0 6 36.00

2 5 12 3 0 10 40.00

 (1 of 2)
A-14 SQL Self-Study Guide

The Sales Table
The Sales Table
The Sales table is a fact table; as such, it is by far the largest table in the Aroma
database and its data is stored in two distinct areas of the database (known
as segments). For information about segments, refer to the Administrator’s
Guide. The Sales table is large compared with the other Aroma tables, but
small compared with typical fact tables at customer sites, which usually
contain millions of rows.

Multipart Primary Key

The Sales table contains a multipart primary key: Each of its five columns is
a foreign-key reference to the primary key of another table:

perkey, classkey, prodkey, storekey, promokey

This primary key links the Sales table data to the Period, Product, Store, and
Promotion dimensions.

To improve query performance, a STARindex structure is built on the
composite primary key of the Sales table. The presence of the STAR index
makes STARjoin processing possible when the retail tables are joined in
queries. For detailed examples of queries that require joins, refer to Chapter
5, “Joins and Unions.” For detailed information about STAR indexes, refer to
the Administrator’s Guide.

2 1 11 3 0 36 279.00

2 5 1 3 0 11 132.00

2 5 10 3 0 12 48.00

...

Perkey Classkey Prodkey Storekey Promokey Quantity Dollars

 (2 of 2)
The Complete Aroma Database A-15

Purchasing Schema of the Aroma Database
Column Descriptions

Purchasing Schema of the Aroma Database
A few of the examples in this guide are based on tables used to track product
orders that the Aroma Company receives from its suppliers. This purchasing
schema uses the same Product, Class, and Period dimensions as the retail
schema but has two dimensions of its own, Deal and Supplier. The
Line_Items and Orders tables both contain facts, but the Orders table can
also be queried as a dimension table referenced by the Line_Items table.

Column Name Contents

perkey Foreign-key reference to the Period table.

classkey Foreign-key reference to the Product table.

prodkey Foreign-key reference to the Product table.

storekey Foreign-key reference to the Store table.

promokey Foreign-key reference to the Promotion table.

quantity Integer that represents the total quantity sold (per day).

dollars Decimal number that represents dollar sales figures (per day).
A-16 SQL Self-Study Guide

Multistar Schema
The following figure illustrates the tables in the purchasing schema.

Multistar Schema
The primary keys of the Line_Items and Orders tables do not match the set
of their respective dimension-table foreign keys. Any given combination of
dimension table primary keys can point to more than one row in these fact
tables; this type of table is known as a multistar fact table or data list.

For example, multiple order numbers in the Orders table can refer to the
same set of Supplier, Deal, and Period characteristics:

Product
classkey
prodkey
prod_name
pkg_type

perkey
date
day
week
month
qtr
year

Period

Deal

Line_Items
order_no.
line_item
perkey
classkey
prodkey
receive_date
quantity
price

dealkey
deal_type
deal_desc
discount

supkey
type
name
street
city
state
zip

Supplier

Orders
order_no.
perkey
supkey
dealkey
order_type
order_desc
close_date
price

Class
classkey
class_type
class_desc

Order_No Perkey Supkey Dealkey

3699 817 1007 0

3700 817 1007 0
The Complete Aroma Database A-17

Purchasing Tables
Purchasing Tables
The purchasing schema contains similar kinds of facts to those stored in the
Sales table, prices and quantities. The prices are dollar values representing
amounts paid to suppliers for whole orders or specific line items within
orders. The quantities represent units of product ordered.

You can use this schema to ask interesting questions about the purchasing
history of Aroma, for example, which suppliers give the best deal on which
products, or which suppliers have the best record for closing orders.

The Aroma Company sells the same products throughout its stores as it
orders through its suppliers; therefore, you can write queries that span both
schemas to compare what was ordered with what was sold or to calculate
simple profit margins.

The following tables make up the purchasing schema of the Aroma database:

The Supplier and Deal tables are exclusive to the purchasing schema and are
referenced by the Orders table.

Tip: The purchasing schema contains data for the first quarter of 2000 only.

Period Defines time intervals such as days, months, and years.

Class Defines classes of products, both sold at retail stores and
ordered from suppliers.

Product Defines individual products, both sold at retail stores and
ordered from suppliers.

Supplier Defines the suppliers of products ordered by the Aroma
Company.

Deal Defines the discount deals applied to orders by suppliers.

Line_Items Contains the line-item detail information for product orders,
including the price and quantity of each item on each order.

Orders Contains information about product orders, such as the full
price of each order, the types of products ordered, and so on.
A-18 SQL Self-Study Guide

Sample Data from the Supplier and Deal Tables
Sample Data from the Supplier and Deal Tables

Query
select * from supplier;

Result

Some columns have been truncated to fit on the page.

Query
select * from deal;

Result

Supkey Type Name Street City State Zip

1001 Bulk coffee CB Imports 100 Church Stre Mountain View CA 94001

1002 Bulk tea Tea Makers, 1555 Hicks Rd. San Jose CA 95124

...

Dealkey Deal_Type Deal_Desc Discount

0 1000 No deal 0.00

1 100 Orders over $10,000 100.00

2 100 Orders over $20,000 500.00

3 100 Supplier catalog coupon 50.00

4 100 Supplier catalog coupon 100.00

37 200 Supplier coffee special 75.00

 (1 of 2)
The Complete Aroma Database A-19

The Supplier and Deal Tables
The Supplier and Deal Tables

Column Descriptions: Supplier Table

Column Descriptions: Deal Table

38 200 Supplier coffee special 50.00

39 200 Supplier tea special 40.00

40 200 Supplier tea special 20.00

Column Name Contents

supkey Integer that identifies exactly one row in the Supplier
table. Supkey is the primary key.

type Character string that indicates the type of products
supplied.

name Character string that identifies the supplier by name.

street, city, state, zip Columns that identify the address of the supplier.

Column Name Contents

dealkey Integer that identifies exactly one row in the Deal table. Dealkey
is the primary key.

deal_type Integer that identifies the type of deal (a code number).

deal_desc Character string that describes the type of deal.

discount Decimal value that indicates the dollar amount of the deal applied
to an order.

Dealkey Deal_Type Deal_Desc Discount

 (2 of 2)
A-20 SQL Self-Study Guide

Sample Data from the Orders and Line_Items Tables
Shared Dimensions

The purchasing schema shares the Period, Product, and Class tables with the
retail schema.

As well as querying the retail and purchasing schemas independently, you
can pose some interesting questions that involve tables from both schemas.
For example, you can join the Sales and Line_Items tables to compare
quantities of products ordered with quantities of products sold. A query like
this uses the shared dimensions to constrain products and periods.

Sample Data from the Orders and Line_Items Tables

Query
select * from orders;

Result

Order_No Perkey Supkey Dealkey Order_Type Order_Desc Close_Date Price

3600 731 1001 37 Coffee Whole coffee b 2000-01-07 1200.46

3601 732 1001 37 Coffee Whole coffee b 2000-01-07 1535.94

3602 733 1001 0 Tea Loose tea, bul 2000-01-07 780.00

3603 740 1001 39 Tea Loose tea, bul 2000-01-21 956.45

3604 744 1005 0 Spice Pre-packed spi 2000-01-16 800.66

3605 768 1003 2 Coffee Whole-bean and 2000-02-12 25100.00

3606 775 1003 2 Coffee Whole-bean and 2000-02-19 25100.00

3607 782 1003 2 Coffee Whole-bean and 2000-02-25 25100.00

 (1 of 2)
The Complete Aroma Database A-21

Query
Query
select * from line_items;

Result

3608 789 1003 2 Coffee Whole-bean and 2000-03-03 30250.00

3609 796 1003 2 Coffee Whole-bean and 2000-03-15 25100.00

...

Order_No Perkey Supkey Dealkey Order_Type Order_Desc Close_Date Price

 (2 of 2)

Order_No Line_Item Perkey Classkey Prodkey Receive_Da Qty Price

3600 1 731 1 1 2000-01-07 40 180.46

3600 2 731 2 10 2000-01-07 150 300.00

3600 3 731 2 11 2000-01-07 80 240.00

3600 4 731 2 12 2000-01-07 150 240.00

3600 5 731 1 20 2000-01-07 60 240.00

3601 1 732 1 0 2000-01-07 60 240.00

3601 2 732 1 1 2000-01-07 60 240.00

3601 3 732 1 10 2000-01-07 60 240.00

3601 4 732 1 11 2000-01-07 60 240.00

3601 5 732 1 12 2000-01-07 60 240.00

3601 6 732 1 31 2000-01-07 70 335.94

3602 1 733 2 0 2000-01-08 70 130.00

3602 2 733 2 1 2000-01-08 70 130.00

...
A-22 SQL Self-Study Guide

The Orders and Line_Items Tables
The Orders and Line_Items Tables
The Orders and Line_Items tables contain the purchasing facts. For more
details about these tables, see page A-16.

Column Descriptions: Orders Table

Column Descriptions: Line_Items Table

Column Name Contents

order_no Integer that identifies exactly one row in the Orders table.
Order_No is the primary key.

perkey Foreign-key reference to the Period table.

supkey Foreign-key reference to the Supplier table.

dealkey Foreign-key reference to the Deal table.

order_type Character string that defines the types of products on the order.

order_desc Character string that describes the type of order.

close_date Date value that identifies when the order was completed or closed.

price Decimal value that indicates the full cost of the order.

Column Name Contents

order_no Integer that identifies exactly one row in the Orders table.
Order_No is the primary key.

line_item Integer that identifies each item listed on the order by number.

perkey Foreign-key reference to the Period table.

classkey Foreign-key reference to the Product table.

prodkey Foreign-key reference to the Product table.

 (1 of 2)
The Complete Aroma Database A-23

The Orders and Line_Items Tables
receive_date Date value that identifies when the line-item was received.

quantity Integer that indicates the quantity of products ordered for each
line-item.

price Decimal value that indicates the cost of the line-item.

Column Name Contents

 (2 of 2)
A-24 SQL Self-Study Guide

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
Addition operator 2-42
Aggregate queries 2-36
Aggregate tables

not in Aroma database 1-5
queries that require 3-5

Aggregation functions 2-31
Aliases, column 2-26, 2-33
ALL comparison predicate 2-19,

4-27
AND connective 2-13
ANY comparison predicate 2-19,

4-32
Arithmetic operators, listed 2-42
Aroma database 1-4, A-2

Class table 1-6, A-4
column descriptions A-6 to A-23
Deal table A-19
dimension tables

purchasing schema A-18
retail schema A-4

fact tables
purchasing schema A-23
retail schema 1-9, A-14

illustrated
purchasing schema A-17
retail schema 1-4, A-2

Line_Items table A-22
Market table 1-8, A-7
Orders table A-21
Period table 1-6, A-10
Product table 1-6, A-4
Promotion table 1-9, A-12
purchasing schema A-16
retail schema 1-4, A-2

Sales table 1-10, A-14
Store table 1-8, A-7
Supplier table A-19

AS keyword, for column
aliases 2-33

ASC keyword 2-26
Ascending order, sorting results

in 2-26
Averages, moving 3-14
AVG function 2-31

B
BETWEEN predicate 2-19
BREAK BY subclause

of ORDER BY clause 2-29
outer join with 5-20

C
Calculations

aggregate functions 2-31
BREAK BY subtotals 2-29
datetime functions 3-34
RISQL display functions 3-3
share 6-21
with subqueries 4-13

CASE expressions
in comparison queries 4-8
in macros 6-6
with NTILE function 3-26

Cases, tracked by technical
support 12

Change in share, macros that
calculate 6-21

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Characters
literals 2-11
patterns 2-21
wildcard 2-21

Child queries. See Subqueries.
Class table, Aroma database 1-6,

A-4
Clauses. See SELECT statement.
COALESCE function 5-17
Columns

aliases 2-26, 2-33
in Aroma tables A-6 to A-23
selecting 2-8

Comment icons 10
Comparison macros 6-17
Comparison operators, list of 2-17
Comparison predicates 2-19

ALL 2-19, 4-27
ANY 2-19, 4-32
BETWEEN 2-19
EXISTS 2-19, 4-29
IN 2-19
in subqueries 4-27
IS NOT NULL 2-19
IS NULL 2-19
LIKE 2-19
NOT EXISTS 4-30
SOME 2-19, 4-32

Comparison queries 4-3 to 4-33
Comparisons 6-15

share 6-17, 6-18, 6-19
Comparisons, market share 6-19
Conditions

compound 2-13, 2-14
correlation 4-19
cross-references as 4-19

Connectives, logical 2-13
Contact information 16
Control breaks 3-10
Conventions

syntax diagrams 7
syntax notation 6

Correlated subqueries 4-19
Correlation names

derived tables 4-11
tables 4-19

COUNT function 2-31
CREATE MACRO statement 6-6,

6-7, 6-10, 6-13

CREATE TEMPORARY TABLE
statement 6-25

CREATE VIEW statement 6-23
Cross-references, as correlation

conditions 4-19
CUME function 3-7
Cumulative totals

calculating 3-7
resetting 3-10

D
Data list A-17
Databases

Aroma 1-4 to 1-11, A-1 to A-23
decision-support 1-5

DATEADD function 3-34
DATEDIFF function 3-37, 5-7
DATENAME function 3-35
Dates, incrementing or

decrementing 3-34
Datetime scalar functions 3-35
Deal table, Aroma database A-19
DEC function 2-48
Decision-support data analysis

introduction 1-3
key concepts 1-13

Decrementing dates 3-34
Demonstration database, script to

install 4
Dependencies, software 4
Derived column names 4-11, 4-14
Derived tables

produced by joins 5-5
produced by subqueries 4-11,

5-28, 5-29
DESC keyword 2-26
Descending order, sorting results

in 2-26
Dimension tables, Aroma

database A-4, A-18
Display functions, RISQL 3-4

CUME 3-7
in views 6-25
MOVINGAVG 3-14
MOVINGSUM 3-17
NTILE 3-23
order-dependent 6-25

RANK 3-19
RATIOTOREPORT 3-31
resetting results of 3-10
TERTILE 3-29

DISTINCT keyword
in select list 2-8
in set functions 2-31

Division operator 2-42
Documentation

list for Red Brick Decision
Server 13

Documentation, types of
online manuals 15
printed manuals 15

E
Embedded macros 6-9
Environment variables

boldface type 5
Equijoins, inner 5-5
EXCEPT operator

example 5-29
syntax 5-22

EXISTS predicate 2-19, 4-29
Explicit tables 2-6
Expressions, as cross-

references 4-21
EXTRACT function 3-40, 4-29

F
Fact tables, Aroma database 1-9,

A-14, A-23
Fact-to-fact joins 5-15
Feature icons 11
Foreign-key references 1-11, A-15
FROM clause

basic syntax 2-5
joins in 5-5
subqueries in 4-11

Full outer joins 5-14, 5-19
Functions. See Display functions,

RISQL; RISQL functions; and
Scalar functions.
2 SQL Self-Study Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
G
Generalized macros 6-12
GROUP BY clause 2-35, 2-38

H
HAVING clause 2-44

I
Icons

comment 10
feature 11
important 10
platform 11
tip 10
warning 10

Important icons 10
IN predicate 2-19
Incrementing dates 3-34
Indexes, STAR A-15
Informix Customer Support 11
Informix Vista option 2-36
Inner equijoins 5-5
Inner queries 4-11
INSERT INTO SELECT

statement 6-26
Intermediate tables. See Derived

tables.
INTERSECT operator

examples 5-25, 5-27
syntax 5-22

IS NULL, IS NOT NULL
predicates 2-19

J
Joins

dimensions and facts 2-23
equijoins 5-5
fact-to-fact 5-15
FROM clause 5-7
full outer 5-19
inner 5-5
introduction to 5-5
left outer 5-17

named-columns 5-7
natural 2-23, 2-24, 5-8
nonprimary-key to foreign-

key 3-37
outer 5-14
self 5-12
WHERE clause 2-23

K
Keywords

ALL 2-19, 4-27
AND 2-13
ANY 2-19, 4-32
AS 2-33
ASC 2-26
AVG 2-31
BETWEEN 2-19
BREAK BY 2-29
COUNT 2-31
CUME 3-7
DATEADD 3-34
DATEDIFF 3-34, 3-37
DATENAME 3-34
DESC 2-26
DISTINCT 2-8, 2-31
EXCEPT 5-22
EXISTS 2-19, 4-29
EXTRACT 3-40
FROM 2-5
GROUP BY 2-35, 2-38
HAVING 2-44
IN 2-19
in syntax diagrams 9
INSERT INTO 6-26
INTERSECT 5-22
IS NULL 2-19
LIKE 2-19
MAX 2-31
MIN 2-31
MOVINGAVG 3-14
MOVINGSUM 3-17
NOT 2-13
NTILE 3-23
OR 2-13
ORDER BY 2-26
RANK 3-19
RATIOTOREPORT 3-31

RESET BY 3-10
SELECT 6-26
SOME 2-19, 4-32
SUBSTR 6-20
SUM 2-31
SUPPRESS BY 2-47
TEMPORARY 6-25
TERTILE 3-29
UNION 5-22
WHEN 3-21
WHERE 2-10

L
Left outer joins 5-14, 5-17
LIKE predicate 2-19, 2-21
Line_Items table, Aroma

database A-22
Literals, character and

numeric 2-11
Logical conditions, compound 2-14
Logical connectives

AND 2-13
list of 2-48
NOT 2-13
OR 2-13

M
Macros, RISQL

basic 6-4
comparison 6-17
defined 6-5
embedded 6-4, 6-9
generalized 6-12
multiparameter 6-10, 6-13, 6-14
naming conventions 6-5
parameterized 6-12
share comparisons 6-19
with parameters 6-7

Market share
calculating changes in 6-21
macros that calculate 6-19
subqueries that calculate 4-13

Market table, Aroma database 1-8,
A-7

Matching character patterns 2-21
MAX function 2-31
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
MIN function 2-31
Moving averages 3-14
Moving sums 3-17
MOVINGAVG function 3-14
MOVINGSUM function 3-17
Multipart primary keys 1-11
Multiplication operator 2-42
Multistar schemas A-17

N
Named-columns joins 5-7
Natural joins 2-24, 5-7, 5-8
Negative operator (-) 2-42
NOT connective 2-13
NOT EXISTS predicate 4-30
NTILE function

inside a CASE expression 3-26
ranking values in groups 3-23

NULL comparison predicate 2-19
NULLs

ignored by set functions 2-31
removing with SUPPRESS BY

clause 2-47
Numeric literals 2-11

O
Online manuals 15
Operators

arithmetic 2-42
comparison 2-17
UNION, EXCEPT, and

INTERSECT 5-22
Option, Vista 2-36
OR connective

in conditions 2-13
versus UNION operator 5-21

ORDER BY clause
BREAK BY subclause 5-20
calculating running totals 3-7
referencing column aliases 5-23
required for RISQL display

functions 3-5
RESET BY subclause 3-10
subclauses 3-10
syntax 2-26

Order of precedence
arithmetic operators 2-42
logical connectives 2-13
parentheses 2-15, 2-42

Order-dependent display
functions 6-25

Orders table, Aroma database A-21
Outer joins 5-14
Outer queries 4-11
Outer references. See Cross-

references.

P
Parameterized macros 6-12
Parent queries 4-11
Parentheses, order of

precedence 2-42
Percentages

calculating with
RATIOTOREPORT 3-31

change in share 6-21
monthly, yearly 4-23

Period table, Aroma database 1-6,
A-10

Platform icons 11
Positive operator (+) 2-42
Precedence, order of 2-13
Predicates

ALL 2-19
ANY 2-19
BETWEEN 2-19
comparison 2-17, 2-19
EXISTS 2-19
IN 2-19
IS NOT NULL 2-19
IS NULL 2-19
LIKE 2-19, 2-21
SOME 2-19
wildcard characters 2-21

Primary keys 1-11, A-15
Printed manuals 15
Product table, Aroma database 1-6,

A-4
Programmed breaks 3-10

Promotion table, Aroma
database 1-9, A-12

Purchasing schema, Aroma
database A-16

Q
Qualified column names 4-21
Query expressions

CREATE VIEW statements 6-24
flexibility of 4-11
FROM clause 4-11
SELECT statements 2-5
UNION, INTERSECT, and

EXCEPT operators 5-22
Query processing, order of 2-35
Query rewrite system, Vista 2-36

R
RANK function 3-19
Ranking

top ten 3-21
values as high, middle, low 3-29
values into unequal groups 3-23

Ratios, calculating 3-31
RATIOTOREPORT function 3-31
RESET BY subclause 3-10
Resetting cumulative totals 3-10
Retail schema, Aroma

database 1-4, A-2
Right outer joins 5-14
RISQL functions

AVG 2-31
COALESCE 5-17
COUNT 2-31
CUME 3-7
DATEADD 3-34
DATEDIFF 3-37
DATENAME 3-35
DEC 2-48
display functions 3-3, 3-4, 3-5, 3-7,

3-8, 3-14, 3-15, 3-32, 3-42
DISTINCT 2-31
EXTRACT 3-40
MAX 2-31
MIN 2-31
MOVINGAVG 3-14
4 SQL Self-Study Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
MOVINGSUM 3-17
NTILE 3-23
RANK 3-19
RATIOTOREPORT 3-31
set functions 2-31
STRING 2-42, 5-7
SUBSTR 6-20
SUM 2-31
TERTILE 3-29
See also Scalar functions and

Display functions.
RISQL macros. See Macros, RISQL.
Rows, selecting 2-10
Running totals, calculating 3-7

S
Sales table, Aroma database 1-10,

A-14
Sample database, Aroma 1-4, A-2
Scalar functions

COALESCE 5-17
DATEADD 3-34
DATEDIFF 5-7
DATENAME 3-35
DEC 2-48
EXTRACT 3-40, 4-29
STRING 2-42, 5-7
SUBSTR 6-20

Scalar subqueries 4-16
Schemas

Aroma database 1-5, A-3
multistar A-17

Segments, for Aroma Sales
table 1-10, A-15

Select expressions. See Query
expressions.

SELECT statement
BREAK BY subclause 2-29, 5-20
FROM clause 2-5

joins in 5-7
subqueries in 4-11

GROUP BY clause 2-35, 2-38
HAVING clause 2-44
ORDER BY clause 2-26, 5-20
processing order 2-35

RESET BY subclause 3-10
summary of syntax 2-48
SUPPRESS BY clause 2-47
WHEN clause 3-21, 3-28
WHERE clause

description 2-10
join specification in 2-23
subqueries in 4-25

Select-list subqueries 4-16
Self-joins 5-12
Set functions 2-31
Share calculations

macros for 6-19
subqueries for 4-13, 4-23

Shared dimensions, in outer join
queries 5-18

Share, change 6-20
Software dependencies 4
SOME predicate 2-19, 4-32
Sorting result sets 2-26
Spaces, removing with SUPPRESS

BY clause 2-47
STAR indexes A-15
Statement

CREATE MACRO 6-7, 6-10, 6-13
CREATE MACRO

statement 6-4
CREATE TEMPORARY

TABLE 6-25
CREATE VIEW 6-23

Store table, Aroma database 1-8,
A-7

STRING function, for truncating
numeric values 2-42, 5-7

Subqueries
comparison predicates in 4-27
correlated 4-19
defined 4-11
FROM clause 4-11
select-list 4-16
spreadsheet-style

comparisons 4-8, 4-16
WHERE clause 4-25

SUBSTR function 6-20
Subtotals, calculating 2-29
Subtraction operator 2-42
SUM function 2-31

Sums
calculating moving 3-17
set function 2-31

Supplier table, Aroma
database A-19

Support, technical 11
SUPPRESS BY clause 2-47
Syntax diagrams

conventions for 7
keywords in 9
variables in 10

System requirements
database 4
software 4

System tables, joining 5-9

T
Table expressions. See Query

expressions.
Tables

aggregate 1-5
Aroma database 1-4 to 1-11,

A-2 to A-24
joining 2-23, 5-5
system 5-9
temporary 6-26, 6-27
See also Derived tables.

Technical support 11
Temporary tables, creating 6-26
TERTILE function 3-29
Tip icons 10
Top-ten rankings 3-21
Troubleshooting, general

problems 12

U
Unary operators 2-42
UNION, INTERSECT, and EXCEPT

operators
examples 5-21 to 5-29
syntax 5-22
UNION versus OR 5-21

Users, types of 3
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
V
Variables in syntax diagrams 10
Views

creating 6-22
selecting from 6-23

Vista, reference to 2-36

W
Warning icons 10
WHEN clause

example with NTILE 3-28
example with RANK 3-21

WHERE clause 2-23
subqueries 4-25
syntax 2-10
versus HAVING clause 2-45

Wildcard characters 2-21

Z
Zeroes, removing with SUPPRESS

BY clause 2-47

Symbols
(), for order of precedence 2-42
%, SQL wildcard character 2-21
+, arithmetic operator 2-42
-, arithmetic operator 2-42
_, SQL wildcard character 2-21
6 SQL Self-Study Guide

	Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Guide
	Types of Users
	Software Dependencies

	Documentation Conventions
	Typographical Conventions
	Syntax Notation
	Syntax Diagrams
	Keywords and Punctuation
	Identifiers and Names
	Comment Icon Conventions

	Customer Support
	New Cases
	Existing Cases
	Troubleshooting Tips

	Related Documentation
	Additional Documentation
	Online Manuals
	Printed Manuals

	Informix Welcomes Your Comments

	Aroma, a Database for Decision Support
	In This Chapter
	Aroma Database Retail Schema
	Basic Aroma Schema
	Period, Product, and Class Dimensions
	Period Table
	Product and Class Tables

	Store, Market, and Promotion Dimensions
	Store and Market Tables
	Promotion Table

	Sales Table
	About the Sales Facts
	Multipart Primary Key

	Commonly Asked Questions
	Easy
	Moderately Difficult
	Very Difficult Without RISQL Extensions

	Typical Data Warehousing Queries
	Summary

	Basic Queries
	In This Chapter
	Using the SELECT Statement to Retrieve Data
	Retrieving Data: SELECT Statement

	Using SELECT List to Retrieve Specific Columns
	Retrieving Specific Columns

	Using the WHERE Clause to Retrieve Specific Rows
	Retrieving Specific Rows: WHERE Clause

	Using the AND, NOT, and OR Connectives to Specify Compound Conditions
	Specifying Compound Conditions: AND, NOT, OR

	Using the AND Connective to Specify Complex Search Conditions
	Specifying Complex Search Conditions

	Using the Greater-Than (>) and Less-Than or Equal- To (<=) Operators
	Using Comparison Operators

	Using the IN Comparison Predicate
	Using Comparison Predicates

	Using the Percent Sign (%) Wildcard
	Using Wildcard Characters

	Using Simple Joins
	Joining Dimensions and Facts

	Using the ORDER BY Clause
	Ordering the Result Table: ORDER BY Clause

	Calculating Subtotals
	Calculating Subtotals: BREAK BY Clause

	Using the SUM, AVG, MAX, MIN, COUNT Set Functions
	Using Set Functions

	Using Column Aliases
	Using Column Aliases: AS

	Using the GROUP BY Clause to Group Rows
	Grouping Rows: GROUP BY Clause

	Using the GROUP BY Clause to Produce Multiple Groups
	Nesting Grouped Results: GROUP BY Clause

	Using the Division Operator (/)
	Using the Arithmetic Operators: (�), +, –, *, /

	Using the HAVING Clause to Exclude Groups
	Conditions on Groups: HAVING Clause

	Removing Rows That Contain NULLs, Zeroes, and Spaces
	Removing Blank Rows: SUPPRESS BY Clause

	Summary
	The SELECT Statement
	Logical Connectives
	Comparison Operators
	Comparison Predicates

	Data Analysis
	In This Chapter
	RISQL Display Functions
	Using RISQL Display Functions
	Usage Notes

	Using the CUME() Function
	Cumulative Totals: CUME

	Using CUME with RESET BY
	Resetting Cumulative Totals: RESET BY Subclause

	Using the MOVINGAVG() Function
	Calculating Moving Averages: MOVINGAVG

	Using the MOVINGSUM Function
	Calculating Moving Sums: MOVINGSUM

	Using the RANK Function
	Ranking Data: RANK

	Using the RANK, WHEN Function
	Ranking the Top Ten: RANK, WHEN

	Using the NTILE Function
	Ranking Values in Groups: NTILE

	Using the NTILE Function with a CASE Expression
	Ranking Values in Unequal Groups: CASE and NTILE

	Using the TERTILE Function
	Ranking Values as High, Middle, or Low: TERTILE

	Using the RATIOTOREPORT Function
	Calculating Ratios as Percentages: RATIOTOREPORT*100

	Using the DATEADD Function
	Incrementing or Decrementing Dates: DATEADD

	Using the DATEDIFF Function
	Calculating Elapsed Days: DATEDIFF

	Using the EXTRACT Function
	Displaying Dateparts as Integers: EXTRACT

	Summary
	RISQL Display Functions
	CASE Expressions
	DATETIME Functions

	Comparison Queries
	In This Chapter
	Comparing Data with SQL
	A Simple Comparison Query

	Using CASE Expressions
	A Solution for Comparing Data: CASE Expressions

	Using Subqueries in the FROM Clause
	A More Flexible Solution: Subqueries in the FROM Clause

	Performing Calculations and Comparisons
	Calculations with FROM Clause Subqueries

	Using Subqueries in the Select List
	Comparisons with Select-List Subqueries

	Using Correlated Subqueries
	Correlated Subqueries in the Select List

	Using Cross-References
	Cross-References with Expressions

	Calculating Percentages of Quarter and Year
	Calculations with Select-List Subqueries

	Using Subqueries in the WHERE Clause
	Comparisons with WHERE Clause Subqueries

	Using the ALL Comparison Predicate
	Comparison Predicates in Subqueries

	Using the EXISTS Predicate
	EXISTS Predicate

	Using the SOME or ANY Predicate
	SOME or ANY Predicate

	Summary

	Joins and Unions
	In This Chapter
	Join of Two Tables
	Inner Joins

	Different Ways to Join Tables
	Joins in the FROM Clause

	System Table Join
	Joining System Tables

	Self-Joins
	Joining a Table to Itself

	Outer Join of Two Tables
	Outer Joins

	Fact-to-Fact Join
	Left Outer Join

	Fact-to-Fact Join
	Full Outer Join with ORDER BY, BREAK BY

	OR Versus UNION
	Combining Result Sets: UNION

	INTERSECT Operation
	Finding Common Rows: INTERSECT

	INTERSECT Operation Inside Subquery
	INTERSECT of Fact Table Data

	EXCEPT Operation
	EXCEPT: Finding the Exceptions in Two Result Sets

	Summary
	Joining Tables
	UNION, INTERSECT, and EXCEPT Operators

	Macros, Views, and Temporary Tables
	In This Chapter
	Basic Macros
	Using Basic Macros

	Embedded Macros
	Using Embedded Macros

	Macros with Parameters
	Using Macros with Parameters

	Multiparameter Macros
	Macros with Multiple Parameters

	Comparisons
	Using Comparison Macros

	Share Comparisons
	Using Share Comparison Macros

	Change in Share
	Using Macros That Calculate Change in Share

	Views
	Selecting from Views

	INSERT INTO SELECT Statement
	Creating a Temporary Table

	Summary
	CREATE MACRO Statement
	CREATE VIEW Statement
	CREATE TEMPORARY TABLE Statement
	INSERT INTO SELECT Statement

	The Complete Aroma Database
	Index

